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P R E F A C E

These notes are based on a series of lectures given in the

Lefschetz Center for Dynamical Systems in the Division of Applied

Mathematics at Brown University during the academic year 1978-79.

The purpose of the lectures was to give an introduction to the

applications of centre manifold theory to differential equations .

Most of the material is presented in an informal fashion , by means

of worked examples in the hope that this clarifies the use of centre

manifold theory .

The main application of centre manifold theory given in these

notes is to dynamic bifurcation theory . Dynamic bifurcation theory

is concerned with topolog ical changes in the nature of the solutions

of differential equations as parameters are varied. Such an example

is the creation of periodic orbits from an equilibrium point as a

parameter crosses a critical value . In certain circumstances , the

application of centre manifold theory reduces the dimension of the

system under investi gation. In this respect the centre manifold

theory plays the same role for dynamic problems as the Liapunov-

Schmitt procedure plays for the analysis of static solutions.

In order to make these notes more widely accessible , we give

a full account of centre manifold theory for finite dimensional

systems. Indeed , the first five chapters are devoted to this. Once

the finite dimensional case is understood, the step up to infinite

dimensional problems is essentially technical. Throughout these notes

we give the simplest such theory , for example our equations are

autonomous . Once the core of an idea has been understood in a simple

I
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5.

setting , generalizations to more complicated situations are much more

readily unders tood.

In Chap ter 1 , we s tate the main resul ts of cen t re manifold

theory for finite dimensional systems and we illustrate their use by

a few s i mple ex ample s. In Chap ter 2 , we prove the theorems which were

stated in Chapter 1 , and Chap ter 3 contains fur ther examples . In

Section 2 of Chapter 3 we outline Ilop f bifurcation theory for
I

2— dimensional systems . In Section 3 of Chapter 3 we apply this theory

to a si ngular per turb at ion p roblem which arises in biology. In (
E x ample 3 o f Chapter 6 w e app l y the same theory to a sys tem of par tial

diff erential equations. In Chapter 4 we study a dynamic bifurcation

problem in the plane with two parameters. Some of the results in this

Chapter are new and , in par t icular , they confirm a conjec ture of

T akens [4 9] . Chap ter 4 can be read independently of the res t of the

notes .  In Chap ter 5, we apply the theory of Chapter 4 to a 4-dimensional

sy stem. In Chap ter 6, we ex tend the centre manifold theory g iven in

Chap ter 2 to a simple c lass of infinite dimension al problems. Final ly,

we il lus trate the ir use in par ti al differential equa t ions by means of

some s imple example s .

I firs t became interested in centre manifold theory throug h

reading Dan Henry ’s Lecture Notes [30]. My debt to these notes is

enormous . I would like to thank Jack K. Hale , Dan Henry and

John Mallet -Paret for many valuable discussions during the gestation

• ~ 
peri od of these notes. In addi t ion , my thanks go to Sandra Spinacci

for conver ting my manuscript into this elegant typescript.

This work was done wi th the financial support of the United States

Army , Durham , under AROD DAAG 29-76-G0294.

June 1979 Jack Carr
Providence , Rhode Island
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CHAPTER 1

INTRODUCTION TO CENTRE MAN IFOLD THEORY

1.1. Introduction

In this chapter we state the main results of centre manifold

theor y for fini te dimensional sys tems and g ive some simple example s

to illust ra te their applica t ion.

1.2. Motivation

To mo t iva te the s tudy of cen tre manifolds we f irs t look at a

s imple example. Consider the sys tem

3 . 2x = ax , y = -y + y , (1.2.1)

where a is a constant. Since the equations are uncoupled we can

easily show that the zero solution of (1.2.1) is asymptotically

stable if and only if a < 0. Suppose now that

i = ax 3 + x 2y (1 .2 .2 )
y = -y + y~ + xy - x

Since the equations are coupled we cannot immediately decide if the

:ero solu tion of (1.2.2) is asymptotically stable , but we mi ght

suspec t that it is if a < 0. The key to understanding the relation

of equation (1.2.2) to equation (1.2.1) is an abstraction of the

idea of uncoupled equa tions.

_~ i ~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~ 
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A cu rve , say y = h ( x ) ,  defined for lx i  small , is sa id  to I
be an invariant manifold for the system of differential equations

k f ( x ,y) ,  ~ = g(x , y ) ,  ( 1 . 2 . 3 )
I

if the solution x(t),y(t) of (1.2.3) through (x0,h ( x 0)) lie s

on the curve y = h(x) for small t , i . e . , y ( t ) = h ( x (t ) ) .  Thu s ,

for equation (1.2.1), y 0 is an invariant manifold. Note that

in deciding upon the stability of the zero solution of (1.2.1), the ~ :
only impor tant equation is * = ax 3, tha t is we only  need study a

first order equation on a particular invariant manifold.

The theory that we develop tells us that equation (1.2.3) has
I

an invariant manifold y = h(x), lx i  small , wi th h(x) = O(x ) as

x -
~ 0 . Fur thermore , the asymp tot ic sta b i l i ty of the zero solu t ion

of (1.2.2) can be proved by studying a first order equation. This

equation is g iven by J
= au~ + u2h ( u )  = au 3 

+ 0(u4), (1.2.4) I

and we see that the zero solution of (1.2.4) is asymptotically stable

if a < 0 and unstable if a ‘ 0. This tells us that the :ero

solution of (1.2.2) is asymptotically stable if a < 0 and un-

stable if a > 0 as we expected .

We are also able to use this method to obtain estimates for

the rate of decay of solutions of (1.2.2) in the case a < 0. For

example , if x(t),y (t) is a solution of (1.2.2) with x(0),y(0) j 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~- . - - - 
~~~~~~~~~
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small , we prove that there is a solution u(t) of (1.2.4) such

that x(t) = u(t)(l+o(l)), y(t) h(u(t))(l+o(l)) as t ~~- ~~~~.

1.3. Centre Man ifolds

We firs t recall the definition of an invariant manifold for

the equa t ion

= N (x) (1.3.1)

where x €]R’~. A set S c]R” is said to be a local invariant

manifold for (1. 3.1) if for x0 € S, the solution x (t) of (1.3.1)

wi th x ( 0) = x0 is in S for I t i <T where T > 0. If we can

always choose I = 
~~~, then we say that S is an invariant manifold.

Consider the sys tem

k = Ax + f (x ,y)
(1.3.2)

= By + g(x ,y)

where x € IRn , ~ € ]R
m and A and B a re cons tant matrices such

that all the eigenvalues of A have zero real par ts while all the

eigenvalues of B have negative real parts. The functions f and

g are C2 wi th f(0 ,0) = 0, f ’ ( O ,O) = 0, g(0,0) = 0 , g ’(O ,O) = 0

(f’ is the Jacobian matrix of f).

If f and g are iden tically zero then (1.3.2) has two

obvious invarian t manifolds , namely x = 0 and y = 0. The in-

varian t manifold x = 0 is called the stable manifold , since if we

res tric t init ial data to x = 0 , all solutions tend to zero . The

L invariant manifold y = 0 is called the centre manifo ld.
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In general , if ~ h(x) i s an invariant manifold for (1.3.2)

and h is smooth , then it is called a centre manifold if h(0) = 0,

h’(O) = 0. We use the term centre manifold in place of local

cent re man i fold if the meaning is clear .

If I and g are identically zero , then all solutions of

(1.3.2) tend exponent ial lv fast , as t ~~~, to solutions of

= Ax , (1.3.3)

that is , the e q u a t i o n  on the centre manifold determines the

asymptotic behavior of solutions of the full equation modulo

exponen t ially decayin g t erms . We now gi ve the analo gue of these

re sul t s when f and g are non-zero. These results are proved

in Chapter 2.

Fheorem 1 . There exists a centre manifold for (1.3.2), v h (x),

l x i  6, where h is C .  -

~~

The flow on the centre manifo ld is governed by the

n-dimensional system

= Au + f (u ,h(u)) (1.3.4)

whi ch generalizes the corresponding problem (1.3.3) for the linear

ca se. The next theorem tells us that (1.3.4) contains all the

neces sary information needed to determine the asymptotic behavior

of small solutions of (1.3.2). -~~~

1~~”

-- -
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Theorem 2 (a) Suppose that the zero solution of (1.3.4) is stable

~asympt oticallv stable) (unstable). Ther~ the zero solu t ion of

(1.3.2) is stable (asymptotically stable) (unstable).

(b) Suppose that the zero solution of (1.3.4) is stible.

Let (x(t),v (t)) he .a solution of (1.3.2) with (x(0), v(0))

sufficientl y small. Then there exists a solution u (t) of (1.3.4)

such tha t as t

x(t) u(t) + 0(e~~
t)

(1.3.5)

y (t) = h(u (t)) + O (e~~
t )

where y 0 is a constant.

If we substitute y(t) = h (x(t)) into the second equation

in (1.3.2) we obtain

+ f(x ,h (xfll Bh(x) + g (x,h(x)). (l.3.b)

Equation (1 .3.t~) together with the conditions h(0) = 0, h’ (0) = 0

is the system to he solved for the centre manifold. T h i s  i s

impossible , in general , since it is equivalent to solving (1.3.2).

The nex t re sult however , shows that in princi ple , the centre m ani -

fold can be ap p roxima ted t o any de g ree of accurac y .

For func t ions ~ : IR
n ~ m which are C 1 in a nei ghborhood

of the orig in def i ne

(M~P)(x) p ’ (x) (Ax + f(x,P(x))] - BP (x) - g (x ,~P(x)).

- ~~~~~~~~~~~ 
— 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ • “-. ~~~~~
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Note that by (1.3.6), (Mh) (x) = 0.

Theorem 3. Let ~ be a C 1 mapping of a neighborhood of the

origin in IR~ into IRm wi th ~ (0) = 0 and ~ ‘ ( 0 )  = 0. Suppo se

that as x -* 0, (M~ ) (x )  = O(~ x~~ ) where q > 1. Then as x 0,

h(x ) - 

~ (x)I 
=

1 .4. Exa mple s

We now consider a few simple examples to illastrate the use

of the above results. 
•

Example 1. Consider the system

k x y +  ax3 + b y 2x
(1.4 . 1 )

5, = -y + cx 2 + dx 2y.

~1
By Theorem 1, equation (1.4.1) has a centre manifold y = h(x). To

approximate h we set

(Mfl (x) ~‘(x)[x~~(x) + ax 3 + bx~
2 (x ))  + ~ (x) - cx 2 - dx 2~~(x ) .  .1 ~

L _
- - - .. ~~~~~~~~~~~~ ~~~~~~ -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~
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if ‘P(x) = 0(x2) then (M4 )(x) = ‘P (x) - cx2 + 0(x 4) . Hence , if

•( x )  = cx 2 , (Mp)(x) = 0(x4), so by Theorem 3, h(x) = cx 2 
+ 0(x 4).

By Theor em 2 , the equation which determines the stability of the

zero solution of (1.4.1) is

= uh(u) + au3 + buh2(u) = (a+c)u 3 
+ 0(u5).

Thus the zero solution of (1.4.1) is asymptotically stable if

a + c < 0 and uns table if a + c > 0. If a + c = 0 then we
have to obtain a be tter approxima t ion to h.

Suppose that a + c = 0. Let P(x) = cx 2 + IP(x) where

= 0(x4). Then (M~P) ( x )  = P(x)  - cdx 4 + 0(x6). Thus , if

~~x) = cx 2 + cdx~ then (Mfl (x) = 0(x6) so by Theorem 3,

h(x) = cx 2 + cdx 4 + 0(x6). The equation that governs the stabili ty

of the zero solution of (1.4.1) is

Ci = uh(u) + au3 + buh 2(u) = (cd+bc 2)u5 
+ 0(u7).

Hence , if a + c = 0, then the zero solution of (1.4.1) is

asymp totically stable if cd + bc 2 < 0 and uns table if
• • - cd + bc 2 > 0. If cd + hc 2 

= 0 then we have to obtain a better

approxima tion to h (see Exercise 1).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

‘1
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Lxercise_ 1 . Suppose tha t a + c = cd + bc 2 0 in Example 1.

Show that the equation which governs the stability of the zero ‘

solu tion of (1.4.1) is Ci = -cd 2u7 + 0(u9) . 
I

.~ ~I1

Lx erci se 2. Show that the zero solution of (1.2.2) is asymptoticall y ,

- 
‘ stable if a < 0 and unstable if a > 0.

~i-i

Exer cise 3. Suppose that in equation (1.3.2), n = 1 so that A = 0.

Suppose a lso that f (x ,y) = ax~ + O( lx i~~~ 
+ 1~~1q ) where 2q > p + 1

and a is non-zero. Show that the zero solution of (1.3.2) is
- 

- asymptot icall y s table if a < 0 and p i s odd , and uns table

ot herwi se. I

I xamp ic_ ‘. Consider the system
• .1

)
3 .1~~x = Lx - x + xy

(1.4.2)

5’ = -y + y2 - x2

where L is a real parameter. The object is to stud y small solu tions

of (1.4.2) for small l t ~) .

- . ~~. .: •.~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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The linearized problem corresponding to (1.4.2) has eigenvalues

-l and C . This means that the results given in Sec tion 3 do not

apply direc tly. However , we can write (1.4.2) in the equivalent

form - -

x C x -  x3 +x y

= -y + y2 - x2 (1.4.3)

C = 0.

When considered as an equation on 1R3 the Cx term in (1.4.3) is

nonlinear. Thus the linearized problem corresponding to (1.4.3) has

eigenvalues -1,0,0. The theory given in Section 3 now applies so

that by Theorem 1, (1.4.3) has a two dimensional centre manifold

y = h(x ,C), l x i  < 6l~ ~~ 
< 62. To find an approxima tion to h

set

(Mq )(x ,C) = ~~ (x ,C)1 Cx~x
3+x~ (x ,C)) + ~ (x ,C) + x

2 
-

Then , if ~P (x) = -x
2 , (M4~) (x ,C) = O(C(x ,C)) where C is a homo-

geneous cubic in x and C . By Theorem 3 , h(x ,€ ) = -x 2 + O( C(x ,C)).

Note also that h(0,C) = 0 (see Section 2.6). By Theorem 2 the

equation which governs small solutions of (1.4.3) is

= Cu - 2u3 + O(iulC(u ,E))
( 1 .4 .4 ,

£ = O .

The zero solution (u,E) = (0,0) of (1.4.4) is stable for small £
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so the representation of solutions given by Theorem 2 applies here .

For < t- < 0 the solu t ion u = 0 of the f i r s t equa t ion in

(1.4.4) is asymptotically stable and so by Theorem 2 the zero solution • 1

of (1.4.2) is asymptotically stable.

For 0 < C < 6
~
, solu tions of the first equation in (1.4.4)

con si st of two orbi ts connec t ing the ori gin to two smal l  f i xed

p o i n t s .  Hen ce , for  0 < £ < 62 the stable m a n i f o l d  of the ori g in

fo r  ( 1 . 4 . 2 ) fo rms  a sep ara t r i x , the uns table m a n i f o l d  con sis t in g of

two stable  orbi ts connec ti n g the or ig in to the f i x ed po in ts .

Ex ercise 4. Study the behavior of all small solutions of

+ + ~w + w 3 
= 0 for  smal l  t .

Example 3. Consider the equations

= -y  + (y+c)z
(1.4.5)

LZ = y - (y+l)z

where £ > 0 is small and 0 < c < 1. The above equations arise

from a model of the kinetics of enzyme reactions [29]. If C = 0,

then (1.4.5) degenerates into one algebraic equation and one

differen tial equation. Solving the algebraic equation we obtain

z = 
~~~~~

-

~

- (1.4.t)

and sub stituting this into the first equation in (1.4.5) leads to

the equa t ion

I ~
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= (1.4.7)

where A = 1 - C.

Using singular per turbation techniques , it was shown in [29]

that for C sufficiently small , under certain conditions , solutions

of (l.4.S) are close to solutions of the degenerate system (1.4.6),

(1.4.7). We shall show how centre manifolds can be used to obtain

a similar result.
-~1

Let t C t . We denote differentiation with respect to t by

and differentiation with respect to I by ‘ . Equation (1.4.5)

can be rewri tten in the equivalent form

~i.
= Cf(y,w) -~~~~

w ’ = -w + y2 - yw + cf(y ,w ) (1 .4.8)

£ ‘ O

where f(y,w) = -y  + ( y+c ) (y -w )  and w = y - z. By Theorem 1,

(1.4.8) has a centre manifold w = h (y,C). To find an approxima tion

to h set

(M~ ) (y, E) = E~y (Y~ C)f(Y~W) + h(y,E) - y2 + y h ( y , C)  - £ f (y , W ) .

If ~~y,E) a y2 - A cy then (M4)(y,C) = 0(1y1
3
+ 1 C 1

3) so tha t by

Theorem 3,

L.
h(y ,c) — y2 - Ac y + 0(~y~

3+~ c~
3).

__________
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By Theorem 2, the equation which determines the asymptotic behavior

of small solutions of (1.4.8) is

I
U ’ = cf (u ,h(u ,C))

1
or in terms of the ori ginal t ime scale

-I
= f(u ,h(u ,c)) a -X (u-u 2) + 0( I cu l + 1u 1

3). (1.4.9)

Again , by Theorem 2 , if C is sufficiently small and y(0),z ( 0) are

suf f ic ien t ly small , then there is a solution u (t) of (1.4.9) such

that

y( t ) = u(t) + O(e t
~
’C)

(1.4.10)
z ( t ) = y (t) - h(y( t ) ,C) + O(e tk) .

Note that equation (1.4.7) is an approximation to the equation on

the centre manifold. Also , from (1.4.10) z(t) y(t) - y 2 ( t ),

which shows that (1.4.6) is approximately true .

The above results are not satisfactory since we have to assume

that the initial data is small. In Chapter 2, we show how we can

deal wi th more general initial data. Here we briefly indicate the

procedure involved there . If y0 ~ -1 , then

(y, w,E) = (y0 ,y~ (l+y 0Y
1,0)

i s a curve of equilibri um points for (1.4.8). Thus , we expect that

-

S 

- - — 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~ ~~ 

-
~~~~~~

‘ ~~~~~ ~
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there is an invariant manifold w - h(y,E) for (1.4.8) defined

for C small and 0 < y < m , (m = 0(1)), and with h (y,C) close

to the curve

• w - y2(l+y)~~ . (1.4.11)

- - For initial data close to the curve given by (1.4.11), the stability

proper ties of (1.4.8) are the same as the stability properties of the

reduced equation

= f(u ,h(u ,C)).

1.5. Bifurcation Theory

Consider the system of ordinary differential equations

= F(w ,C)
(1.5.1)

F(0,c) 0

where w E 11~n~m and C is a p-dimensiona l parameter. We say that
• C = 0 is a bifur cation point for (1.5.1) if the qualitative nature

of the flow changes at C - 0, that is , if in any neighborhood of

C = 0 there exist points Cl and £2 such that the corresponding

local phase portraits of 
~
1
~~

5• ’
~~ 

and 
~
1
~~

5 • 1
~~C are not topological ly

(1 equivalent.

Suppose that the lineari zation of (1.5.1) about w = 0 is

_ 
~~~~~~-- ,- - . ~~~~~~~~~~~~~~~~~~~ - -
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* = C(L)w. (1.5.2)

If the eigenvalues of C(0) all have non-zero real parts then ,

for small kl~ small solutions of (1.5.1) behave like solutions

of (1.5.2) so that £ = 0 is not a bifurcation point. Thus , from

the poin t of view of local bifurcation theory the only interesting - )

situation is when C(0) has eigenvalues wi th zero real parts. i
Suppose that C(0) has n eigenvalues with zero real parts

and m eigenva lues whose real parts are negative. We are assuming

that C(0) does not have any positive eigenvalues since we are

in terested in the bifurcation of stable phenomena.

Because of our hypothesis about the eigenvalue s of C(O) we

can rewrite (1.5.1) as

k Ax + f(x,y,c)

= By + g(x ,y,C) (1.5.3)

where x € IRS, y € iRm , A is an n x n matrix whose eigenvalues

all have zero real parts , B is an in in matrix whose eigenvalues

all have negative real parts , and f and g vanish together with

- - 
each of their derivatives at (x ,y, c) = (0 ,0,0).

By Theorem 1, (1.5.3) has a centre manifold y = h(x ,C),

l x i < 6~~ , I C I  < 6
~
. By Theorem 2 the behavior of small solutions

of (1.5.3) is governed by the equation

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•- • . . = ,- -  . - 
5 - . - 

-



Ci = Au + f(u,h(u) ,E)
(1.5.4)

C — 0.

In applications n is frequently 1 or 2 so this is a very useful

reduction. The reduction to a lower dimensional problem is

analogous to the use of the Lyapunov-Schmidt procedure in the

analysis of state problems. For the relationship between centre

manifold theory and other perturbation techniques such as amplitude

expansions , see [12].

1.6. Comments on the Literature

Theorems 1-3 are the simplest such results in centre manifold

theory and we briefly mention some of the possible generalizations.

(1) The assumption that the eigenvalues of the linearized

problem all have non-positive real parts is not necessary.

(2) The equations need not be autonomous.

(3) In Certain circumstances we can replace ‘equilibrium

point’ by ‘invariant set’ .

(4) Similar results can be obtained for certain classes of

infinite-dimensional evolution equations , such as partial differ-

ential equations.

There is a vast literature on invariant manifold theory

[1 ,6,18,19,23 ,24,26,28,30,31 ,36,37,38,40,42]. For applications of

invariant manifold theory to bifurcation theory see 11 ,12 ,13 ,14,15 ,

20,27 ,30,32 ,33,34,39,40,41 ,42,45,50]. For a simple discussion of
- I 

stable and unstable manifolds see [18, Chapter 13] or [23, Chapter 3].

-—5-
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In Chapter 2 we prove Theorems 1-3. Our proofs of Theorems 1 j
and 2 are modelled on Kelly (37,38]. Theorem 3 is a special case of 

-

a result of Henry [30) and our proof follows his. Throughout I
Chap ter 2 we use methods that generalize to infinite dimensional

problems in an obvious way.

III~ .1 ~:

~~

I
I

— ~~~

—-- -

- -~~.•~~•-~~ ——. ~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _  J~~~~~~~
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CHAPTER 2
PROOFS OF THEOREMS

2.1. Introduction

In this chapter we give proofs of the three main theorem s

stated in Chapter 1. The proofs are essentially applications of

the contraction mapp ing princ iple. The procedure used for defining

the mappings is rather involved , so we first give a simple example

to help clarify the technique. The proofs that we give can easily

be extended to the corresponding infinite dimensional case; indeed

essentially all we have to do is to replace the norm 
~ 

in finite

dimensional space by the norm I H in a Banach space.

2.2 . A Simple Example

We consider a simple example to illustrate the method that we

-
~ 

- 
use to prove the existence of centre manifolds.

Consider the system

x 2 ,  ~~~, 0, ~ — -y + g(x1,x 2). (2.2.1)

where g is smooth and g (x
1
,x ,) - 0(x~+x 2) as (x ,x )  (0,0).

We prove that (2.2.1) has a local centre manif old.

Let ~: 1R .IR be a C~ function with compact support such

that ~i (x 1
,x ,) - 1 for (x

1
,x ,) in a nei ghborhood of the origin.

- , 
- Define C by G (x

1
,x

2
) - ~(x1

,x 1)g(x1
,x ). We prove that the

system of equations

I

- - 
-~~~~~-~~~-- ~~

-.
~~~

- -
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x2~ 
— 0, 5’ — -y  + G(x1,x2), (2.2.2)

has a centre manifold y = h(x1,x2), (x1,x2) €1R
2. Since I

G(x 1,x2) 
= g(x1,x2) in a neighborhood of the origin , this proves

that y = h (x1,x2), x~ + x~ < 6 for some 6, is a local centre -

manifold for (2.2.1).

The solution of the first two equations in (2.2.2) is 
-

x 1 (t) = z1 + z2t , x2(t) 
= z2, where x1(0) = z

~
. If

y(t) = h(x 1 (t),x2(t)) is a solution of the third equation in (2.2.2)

then

~~~~~
- h(z1#z2t ,z2) = -h(z1

+z2t ,z2) + G(z 1+z2t ,z2). (2.2.3)

To determine a centre manifold for (2;2.2) we must sing le out a

special solution of (2.2.3). Since G(x1,x2) is small for all x1 
-:

and x 2, solutions of the third equation in (2.2.2) behave like

solutions of the linearized equation 5, = -y. The general solution

of (2.2.2) therefore contains a term like e t . As t + ~~~~, this 
.

componen t approaches the origin perpendicular to the z 1,z2 plane .

Since the centre manifold is tangent to the z1,z2 plane at the

ori g in we must eliminate the e t component , that is we must )

eliminate the component that approaches the orig in along the stable

manifold as t -~ ~~~~. To do this we solve (2.2.3) together with the - -

condition

lim h (z1-+z 2t ,z2)e
t 

= 0. (2.2.4)

~~~~~~~~~~ _ _ ~ - - __r._~~~~~~~- _ __... • __ __~~_ •~ 
—- 

- 
-_-.~~~~ . 

,~~~~
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In tegrating (2.2.3) between -
~~~~ and 0 and using (2.2.4)

we obtain

h(:1, z,) = J e ~ G(z 1+z 2s ,z2)ds .

By construction , y = h(z 1, z,) is an invariant manifold for (2 .2 .2 ).

Using the fact that G has compact support and that G(x1,x 2) has

a second order zero at the ori g in it follows that h (z1,z2) has a

second order zero at the orig in ,-that is h is a centre manifold. :-

2.3. Existence of Centre Manifolds

In this section we prove that the system

= Ax + f (x ,y)
(2.3.1)

= ~~~~
. + g(x ,y)

has a cent re mani fold . As before x € IR”, y € IRm , the eigenvalues

of .\ have zero real parts , the eigenvalues of B have negative

real parts and f and g are C2 func tions which vanish together

wi th their der ivat ives a t the ori g in.

Theorem 1. Equation (2.3.1) has a local centre manifold

y h(x), l x i < 6, where h is C2.

Proof. As in the example given in the previous section , we prov e

a the ex ist ence of a centre manifold for a modified equation . Let

L ~ : IR” -, [0,1 ) be a C~ func tion with ~ (x) = 1 when l x i 1

ii 
_ _
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and ~- ( x) = 0 when l x i > 2 . For C > 0 define F and C by

1 (x ,y )  = f ( x ~~(~~),y), G(x , y )  = g (x~~(~ ),y). I
Thc reason that the cut-off function ~ is only a function of x

is that the proof of the existence of a centre manifold generalizes

in an obvious way to infinite dimensional problems .

We prove that the system I
* = Ax + F(x,y) J(2.3.2)
5’ 

= By + G(x ,y) -

has a centre manifold y = h(x), x E iR”, for small enough C . Since

F and C agree with £ and g in a nei ghborhood o f the orig in , I
this proves the existence of a local centre manifold for (2.3.1). 1

For p > 0 let X be the set of Lipschit: functions

n m • . • n 1h : IR -
~~ JR with Lipsch itz constant p , ih(x) I < p for x € JR

and h (0) = 0. With the supremum norm , X is a complete

~1space.

For h € X and € 1R~ , let x(t ,x0,h) be the solut ion of

= Ax + F(x ,h ( x ) ) , x (O ,x0,h) = x0. (2.3.3) 1
The bound s on F and h ensure that the solution of (2.3.3) exists

for all t . We now define a new func t ion Th by

(Th)(x 0) = f e~~~ G ( x ( s ,x0,h), h(x(s ,x0,h ) ) ) d s .  (2 .3.4 )
•

1

- i  j

-
• 

___________SS

~~ 

~~~~~~ ~~~~~~~~~~~~~~ 
- -

~
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If h is a fixed point of (2.3.4) then h is a centre manifold

for (2.3.2). We prove that for p and C small enough, I is a

contraction on X.

Using the definitions of F and G , there is a continuous

function k(c) with k(0) = 0 such that

F(x ,y) I + I G ( x ,y) I < k(C) 
‘

IF(x , y )  - F(x ’ ,y ’) I < k(c) [ Ix -x ’ I + ly-y ’ H~ 
(2 .3. 5)

G(x ,y) - G(x ’,y’) I < k(C)[ix-x ’ I + l y - y ’ I ] ~

for all x , x ’ € IR” and all y, y ’ € iRm wi th l y l ,  I Y ’ I  < C

S ince the eigenvalue s of B all have nega t ive real par ts ,

there exist positive constants 8,C such that for s < 0 and

y E l R ~~,

r 
~e~~ 5y~ < Ce 8

~ I y I .  (2. 3.6)

Since the eigenvalues of A all have zero real par ts , for each
- L. r > 0 there is a cons tant M(r) such that for x € IR” and

s € IR,

Ie
A5

x I < M (r)er I s u I x I . (2.3.7)

Note that in general , M(r) + as r ~ 0.

If p < C , then we can use (2.3.5) to estimate terms involving

G(x(s ,x0,h),h(s,x0,h)) and similar terms. We shall suppose that

p < c  from now on .

I
- - - - —.~ ~~~~~~~~~ —.— 5~~~~ _ - -‘ -— - - -  5— 

-.5---- - - - -—- — - - —— . 5 —  ~--—.—-~
_ J _
~..~

_. ~i- .5-—- —
~ 
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If x0 € IR
”, then using (2.3.6) and the estimates on G and j

h , we have from (2.3.4) that

iTh(x 0)I < C8~~k(C). (2.3.8)

Now let x0, x1 € IR”. Using (2.3.7) and the estimates on F

and h , we have fr om (2 .3 .3) tha t for r > 0 and t < 0 ,

ix (t ,x0,h) - x ( t ,x 1,h) I < M ( r ) e ~~
t I x ø~x 1I

+ 2M(r)k(c) 
f
°
er(5 t)Ix (s,xo,h) - x(s ,x1,h)Ids.

t

- j

By Gronwa ll’ s i n e q u a l i ty ,  for t < 0 ,

Ix( t ,x0,h) - x ( t ,x 1,h ) I  < M(r)ix 1-x 0Ie~~
t , (2 .3 .9)

where y = r + ZM (r)k(L). Using (2.3.9) and the bounds on G and

h , we ob tain from (2.3 .4)

iTh(x 0
) - Th(x 1)I < C (M (r) + p ) k ( c ) (~ -y Y ’I x 0 -x 1 I ( 2 . 3 . 10 )

if £ and r are small enough so that ~ > y .

Similarly , if h1, h2 € X and x0 E]R”, we obtain

lh 1 (x0) 
- Th2(x0)I < Ck(C)r (~ -‘y~~

1 [4M(r)k2(C) + 1] 11h 1-h 2 i i .  (2.3.11)

- —~~-~~~~~~~~~~~~- - —- - 5k ~~~~~~~~~~~~ 
-~~ - ~~~~~~~~
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By a suitable choice of p,C and r, we see from (2.3.8),

(2.3.10) and (2.3.11) that I is a contraction on X. This proves

the existence of a Lipschitz centre manifold for (2.3.2). To prove

that h is C’ we show that I is a contraction on a subset of X

consisting of Lipschitz differentiable functions. The details are

similar to the proof g iven above so we omi t the de tails. To prove

that h is C 2 we imitate the proof of Theorem 4.2 on page 333

of [18).

2.4. Reduction Principle

The flow on the centre manifold is governed by the n-dimensional

system

= Au + f(u,h(u)). (2.4.1)

In this section we prove a theorem which enables us to relate the

asymptotic behavior of small solutions of (2.3.1) to solutions of

(2.4.1).
i .

We firs t prove a lemma which describes the stability properties

of the centre manifold.

~~
. Lemma 1. Let (x(t),y(t)) be a solution of (2.3.2) with I (x(01 ,v (0))I

sufficien tly small. Then there exist positive C1 and p such that
1- -

jy (t) - h(x(t)) I < Cje~~
t

I y ( O )  - h(x(0)) i

for all t > 0.

5.-. ~~~~~~~~~~~~
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i
Proof. Let (x(t),y(t)) be a solution of (2.3.2) with (x(0),y(0)) 

~
~1sufficiently small. Let z(t) = y(t) - h(x(t)), then by an easy

computation 
.. - -~1

= Bz + N(x ,z) (2.4.2) 1

Iwhere

4

N(x ,z) = h’(x)[F(x,h(x)) - F(x ,z+h(x))] + G(x ,z+h(x)) - G(x ,h(x)).

Using the defini ti ons of F and G and the bounds on h , there is j
a continuous function 6(C) with 6(0) = 0 such that 

-

IN(x ,z)I < 6(~ )I zi if I z I < C . Using (2.3.6) we obtain , from

(2 .4. 2),

Iz(t) I < Ce 8t
lz(O) I + C6(C) f e ~~~

t 5) Iz(s)Ids I
and the resul t fol low s from Gronw all’s inequali ty.

Before g iving the main result in this section we make some

remarks about the matrix A. Since the ei genvalues of A all have

zero real par ts , by a change of basis we can put A is the form -
~~~

A = A 1 
+ A , where A2 is nilpotent and

A t  
. 11 

x l  = I x I . (2.4.3)

Since A 2 is nilpotent , we can choose the basis such that

_ _ _ _  _ _ _ _ _ _  

‘iLi
— - ‘.5 -5-— --.-— - - - ~~~~5- ~~~~ 5~~~~~~~ 5. 5- -~~~~5~~~~~ - ~~~~~~~~~~~~ - ---



A2x~ < (8/4)IxI, (2.4.4)

-I
where 8 is defined by (2.3.6).

I We assume for the rest of this section that a basis has been

chosen so that (2.4.3) and (2.4.4) hold.

Theorem 2. (a) Suppose that the zero solution of (2.4.1) is stable

(asymptotically stable)(unstable). Then the zero solution of (2.3.1)
I

is stable (asymptotically stable) (unstable).

I. (b) Suppose that the zero solution of (2.3.1) is stable.

Let (x(t),y(t)) be a solution of (2.3.1) with (x(0),y(0))

.. sufficiently small. Then there exists a solution u(t) of (2.4.1)

such that as t -
~

x(t) = u(t) + O(e~~
’t)

(2.4.5)
y( t ) = h(u( t )) + O(e~~’t )

[ where y ‘ 0 is a constant depending only on B.

1, Proof. If the zero solution of (2.4.1) is unstable then by

invariance , the zero solution of (2.3.1) is unstable. From now on

we assume that the zero solution of (2.3.1) is stable. We prove

that (2.4.5) holds where (x(t),y(t)) is a solution of (2.3.2) with

i(x(O),y(0))~ sufficiently small. Since F and G are equal to f

£ and g in a neig hborhood of the orig in this proves Theorem 2. We

divide the proof into two steps.

‘ - _ _ _ _ _
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I. Let u0 E ]R
” and z0 € JJ~m with I (u0, z0) I  sufficient ly

small. Let u(t) be the solution of (2.4.1) with u(0) = u0. We

pr ove that there exists a solution (x(t),y(t)) of (2.3.2) with

y(0) - h(x(0)) = z0 and x( t) - u(t), y(t) - h(u(t)) exponentially

small as t -p

II. By Step I we can define a mapping S from a neighborhood

of the ori gi n in lRnfm into lRl
~

$
~
m by S(u0,z0) = (x 0,z0) where

= x(0) . For (x 0,z0fl sufficientl y small , we prove tha t

(x0,z0) is in the range of S.

I. Let (x(t),y(-t)) be a solution of (2.3.2) and u(t) a

solution of (2.4.1). Note tha t if u(0) is sufficiently small ,

= Au + F(u ,h(u)) ( 2 .4 . 6) •1

since solutions of (2.4.1) are stable. Let z(t) = y( t ) - h(x(t)),

p (t) = x(t) - u(t), then by an easy computation

= Bz + N(~ +u ,z) (2.4.7)

= A4 + R(4- ,z) (2.4.8)

where N is defined in the proof of Lemma 1 and

R(~P ,z) = F(u+~~,z+h(u+4)) - F(u,h(u)).

iow
~~~~

mu 1 2  . ,  (2.4. 8) a s a  f ixed roble
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L
For a > 0, K > 0, le t X be the se t of cont inuous functions

~
: (0 ,~ ) -~]R~ with I~ (t)eat I < K for all t > 0. If we define

I I~~I I = sup{I~~(t)e~
t

I : t > 0), then X is a complete space. Let

u0,z0 be sufficiently small and let u(t) be the solution of

(2.4.6) with u(0) = u0. Giv en ~ € X let z( t) be the solution

of (2.4.7) with z(0) = z0. Define T~P by

A 1 (t-s)(Tfl(t) = - J e [A 2~ (s) + R(~~(s),z(s))]ds. (2.4.9)
t

We solve (2.4.9) by means of the contraction mapping principle.

If ~P is a fixed point of T , then retracing our steps we find that

x(t) = u( t ) + P ( t ) ,  y ( t )  = z ( t) + h(x(t)) is a solution of (2.3.2).

We can take a to be as close to 8 as we please at the cost of

- increasing K and shrinking the neighborhood on which the result

is valid. For s implici ty however , we take K = 1 and 2a = 8
- where 8 is def ined by (2 . 3 . 6) .

Using the bounds on F ,G ,h and the fact that N(~~,0) = 0, there

is a Continuous function k(E) with k(0) = 0 such that if

€ R” and z1,z, € ]R
m wi th 1 z~~1 < c , then

[ IN(~,,z1) 
- N(~ 2,z2)I < k(c)[fz 1 II~ 1 -~ 2 f + f z ~~-: ,f I

[ IR(~ 1, z1) 
- R(~ 2,~ 2)I k(C)[Iz,-z 2 1 + I~ l -

~ z I 1

I From (2.4.7),

--.—---

~

.--— - ----- -

~

—

~
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~~0

i z ( t ) I  C I z ø ie 8t 
+ Ck (C) 

J
- 8 ( t - s )

1~~~~~1~~

wher e we have used (2.3.6) and (2.4.10). By Gronwall’ s inequalit y

Iz (t)I C I z 0Ie ~ (2.4.11)

i-~where = 8 - Ck (C). From (2.4.9), if c is sufficientl y

small ,
‘1

IT~ (t)I ~ e + k ( L)  
J:

(e as 
+ C I z 0Ie ’ )d’~ c-at

where we have used (2.4.3), (2.4.4), (2.4.10) and (2.4.11). h ence

I maps X into X.

Now le t ~P 1,’P, € X and let z~~, z , be the coresponding

solutions of (2.4.4) with z (O) = Z 0. We first estimate

w(t) = z 1 (t) 
- z ,(t). From ( 2 . 4 . ’) ,

lw(t) I < Ck (L) 8 (t-s) 
lI z 1 (s) I l

~~
(s) - 

~2(s) I + Iw s) I )ds.

Using ( 2 . 4 . 1 1 ) ,

Iw (t) I < C l k( L )I I~ I~~ , II e ~~
t 

+ Ck(C) 
i~~~~~

t
I w(s) Ids

where C 1 is a constant , so that by Gronwa ll’ s inequalit y

—
~~~ t

Iw(t) I = z 1 (t) 
- z ,(t) C 1 k(t~) I I~~ ~~2 I Ic 

1 (2.4.12)

- ~~~~ ~~- ~~~~~~~~~~ ~~~~~ ~~~~~ ~~~~~~~~~~~~~ 
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Using (2.4.4) and (2.4.12), for C sufficiently small ,

lT~1(t) 
- T~2(t)I ~ ~ II~~~~ I I + k(C) i(I~i(s) 

- 

~~~~~ 
+ Il l(s) 

- z2(s)I)ds

<

where u < l .

The above analysis proves that for each (u ,z ) sufficient ly
T 0 0

£ small , T has a unique fixed point. If U is a neighborhood of

F the origin in ~ n+m then it is easy to repeat the above analysis

to show that I: X ~ U -‘ X is a continuous uniform contraction.

F This proves that the fixed point depends continuously on u0a-

and z .0 

= =II. Define S by S(u0,z0) (x0,z0) where x0 U
0 

+ p(0 ) .

4 Since ~ depends continuously on u0 and z0, S is continuous.

- We prove that S is one-to-one , so that by the Invariance of

Domain Theorem (see [9] or (47]) S is an open mapping . Since

I S(0,0) = 0, this proves that the range of S is a full neighbor-
n~mhood of the origin in JR

I Proving that S is one-to-one is clearly equivalent to proving

that if u0 
+ 4~~(0) = u

1 
+ 
~l
(0) then u0 

= u1 and q 0(0) 
=

I ~~~ U
0 

+ ~P 0 (o ) = u1 
+ 
~l
(0) then the initial values for x and

y are the same , so that by uniqueness of solution of (2.3.2),

u0(t) + q
0(t~ 

= u1(t) + •1(t) for all t ? 0, where u. (-t) is the

-

S solution of (2.4.6) with u1(0) = u1. Hence, for t ? 0,

I u0(t) 
- u1(t) 

= •1(t) 
- 40(t). (2 .4 . 13)

I
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Since the real parts of the eigenvalues of A are all zero ,

lim 1u 1 (t) 
- u0(t)Ie

t t 
= for any c ‘ 0 unless u1 (0) u0(0).t-~~

Also , I.~~(t)I ~ e
at for all t > 0. It now follows from (2.4.13)

that S is one-to-one and this completes the proof of the theorem . - -~

2 .5 . App roxima t ion of the Cen t re Manifold

For functions p : b~’’ 1k” which are C1 in a neighborhood of

th e origin defin e

(Mp)(x) = ~P’(x) [Ax + f(x ,*p (x))) - B~ (x)  - g(x ,P(x)).

Theorem 3. Suppose tha t ~P( 0) = 0 , p ’ ( O )  = 0 and tha t (M~p)(x) -

as x -, 0 where q ‘ 1. fhen as x -s
~ ~~~ ,

Ih(x) - 
~(x)l =

Proof. Let 0 :  1kn ~ JRfl~ be a continuousl y differentiable function

wi th compact support such that O (x) — P(x) for I x I small. Set

N(x ) = 0’ (x) [Ax + F(x ,0 (x) ) I - BO (x) - G (x ,0 (x) ) , ( 2 .  S .1)

where F and G are defined in Theorem 1. Note that N (x)

as x 0.

In Theorem 1 , we proved that h was the fixed poin t o f a
con tract ion mapping I: X - X. Define a mapping S h~ S: -

T(z+0) - 0 ; the domain of S being a closed subset \ c X . Since

I is a contraction mapping on X , S is a contraction mapping on 1.

~

---- -

~

-
-- -  --- -5- -

~~~~~~~~~~~~~~~~~~~~~~~~
-- -
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For K > 0 let

Y = {z € X: iz(x) I < K Jx~~ for all x €1R ’~}.

If we can find a IC such that S maps Y into Y then we will

have rroved the theorem .

We firs t find an alternative formulation of the map S. For

I z € Y let x (t ,x0) be the solu t ion of

= Ax + F(x,z(x) + e (x)), x(0 ,x0) x(O). (2.5.2)

I From (2.3.4)

1 0 8(T(z+0))(x0) 
= J e 5G ( x ( s,x0),z (x( s,x0)) + e ( x ( s ,x 0) ) ) d s.

I -

~~~ 

‘

-S

Now

I
I - O (x 0 ) = 

I_cc , 
~~~~~~ [e~~ S0( x (s , x 0) ) ] d s  r

I = I e B5 [Be ( x ( s ,x 0)) - 

~
j. 0(x(s,x0))Jds . 1 -

I Writing x for x(s,x0) etc., from (2.5.1) and (2.5.2)

BO (x) - U (x) = B~ Cx) - U ’Cx ) [Ax + F (x,z (x) + ~ (x))J

= -N(x) - G(x ,0(x)) + tI ’(x) (F(x ,U) - F(x,z(x) + O(x))]. 

‘

~

‘ . 
-- 

~~~~~~~ .~ - -~~~~—- — -—- - - - ‘ 5 - -
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Using Sz = T(z+U) - 8 and the above calculations

0
(Sz)(x 0) J e ~~

SQ(x(s,x0), z ( x ( s,x0)))ds (2.5.3)

where x (s,x0) is the solution of (2.5.2) and

Q(x z) = G(x ,8s-z) - G(x 8) - N(x) s e ’(x) [F(x ,e)  - F(x ,t3+z)] . (2.5.4)

We now show that S maps Y into Y for some K > 0. By
choosing U suitably, we may assume that I°(x)I < C for all
x € 1R~ . Since N(x) = O((~~1~ ) as x — 0,

IN(x)I < ~~~~~ x E R~ ( 2 . 5 . 5 )

where C1 is a constant. Now

IQ(x ,z)I ~ IQ(x ,o)( + IQ(x ,z) - Q(x ,0)Ip 

(2.5.6)
= IN( x)I + {Q(x,z) - Q(x ,0)t . -

We can estimate Q(x,z) - Q(x ,0)J in terms of the Lipschjtz
constants of F and C. Using (2.3.5), there is a continuous
function k(C) with k(0) = 0, such that

I Q ( x , z) - Q(x , 0 ) I  < k(c )Jzl (2.5.7) 
-

for I z I < 
~~~. Using (2.5.5), (2.5.6), (2.5.7), for z E Y and

- SIS. ~~~~~~~~~~~ -
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and x € 1k”, we have that

IQ (x,z)I c1 Ix~ + k(c)Iz(x)I
(2.5.8)

< (C1+Kk (L))~ x~~ .

Using the same calculations as in the proof of Theorem 1, if

x (t,x0) is the solution of (2.5.2), then for each r > 0, there is

a constant M(r) such that ‘ -4
Ix(t ,x0)I < M (r)Ix0Ie~~

’t , t < 0 (2.5.9)

where ~ = r + 2 M(r)k(~ ).

Using (2.3.6), (2.5.8) and (2.5.9), if z € Y ,

I (Sz)(x 0fl ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c 2~~0 ,~

provided t. and r are small enough so that 8 - qY > 0. By choos ing

K large enough and ~ small enough , we have that C2 < K and t h i s

completes the proof of the theorem .

2 . 6 .  Properties of Centre Manifolds

(1) In general (2.3.1) does not have a unique centre manifold.

For example , the system x = -x 3, ~ = -y ,  has the two parameter

family of centre manifolds y = h(x,c1,c,) where
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C
1 
exp(- 

~~ 
x~~), x > 0 -

h(x ,c
1
,c2)~

4~ 0 x = 0

I 1 - 2

1. c2 exp(-~~.x )

Uowever , if h and h1 are two centre manifolds for (2.3.1),

then by The orem 3, h(x) - h1(x) = O (1X 1~~) as x ÷ 0 for all

q > 1. 
5

( 2) If f and g are ck , (k > 2), then h is [37) . 
-
~~

If f and g are analytic , then in general (2.3.1) does not have 
-

an analytic centre manifold , for example it is easy to show that -~~

U the system

x = -x 3 , y = -y + x2 (2.6.1)

doe s not have an analy t ic c ent re man i fold ( see exercise (1)) . .~~

(3) Centre manifolds need not be unique but there are some

po ints which must always be on any centre manifold. For example ,

suppose tha t (x 0,y0) is a small equilibrium point of ( 2.3.1) and

let y = h(x) be any centre manifold for (2.3.1). Then by Lemma 1

we must have y0 = h(x0). Similarly, if r is a small periodic -

orbit of (2.3.1), then r must lie on all centre manifolds.

(4) Suppose that x(t),y(t) is a solution of (2.3.1) which I
remains in a neighborhood of the origin for all t > 0. An -J
examination of the proof of Theorem 2 , shows that there is a solution j

I HL. 
__
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u(t) of (2.4.1) such that the representation (2.4.5) holds .

(5) In many problems the initial data is not arbitrary , for

examp le , some of the components might always be nonnegative .

Suppose S C]Rfl
~~ wi th 0 € S and that (2.3.1) defines a local

dynamical system on S. It is easy to check , that with the obvious

modifica tions , Theorem 2 is valid when (2.3.1) is studied on S.

Exercise 1. Consider

x = -x 3, ‘ = -y + x 2. (2.6.1)

Suppose that (2.6.1) has a centre manifold y = h(x), where h is

analy tic at x 0. Then

h(x) = !a x ”
n 2  “

for small x. Show that ~~~~ = 0 for all n and that a~~2 = na~
for n = 2,4,. .., wi th a, = 1. Deduce that (2.6.1) does not have

an analy tic cen tre manifold .

Exercise 2 (Modification of an example due to S.J. van Strien [48]).

If f and g are C~ func t ions , then for each r , (2.3.1)
has a C~ centre manifold. However , the size of the neighborhood

on which the centre manifold is defined depends on r. The following

example shows that in general (2.3.1) does not have a C~ centre

manifold , even if f and g arc anal yti c .

____  — ~~S—
.5 L S4SaM~~~.~~~ -.- --5---- 
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--—- -5-—.——— 5-——.— -S- -~.5~t — ~~~~~~



—-- - - -~~~~~~~~~~~~~ --‘~~~~ — -
~~~~~~~~~

----- ~

- ——- 5--—- - - 
~~~~~~

- -

-36-

Consider

= -
~~~~~~ 

- ~~ 3
, ~ = -y + ~2, L = 0. (2.6.2)

Suppose that (2.6.2) has a C~ centre manifold y = h(x ,L) for

l x i  5 , L~~ ~- ~ Choose n > 6~~ . Then since h(x , (2n)~~~) is

C in x , t h e r e  e x i s t  c o n s t a n t s  a 1,a ,, .  . . ,a2~ such that

2n .

h(x ,(2n)
1
) ~ 

a ix
’ + O(x~ ’~~~)

i=1

for l x i small enough . Show that a
~ 

= 0 for odd i and tha t if

n > 1 ,

(1 - (2i)(2nY ’)a ,~ 
= (2i-2)a ,~~~1, i =

(2.6.3)

a2 ~ 0.

Obtain a contradiction from (2.6.3) and deduce that ( 2 . 6 . 2 )  does

not have a C~ cen t re manif old.

Exercise 3. Suppose that the nonl inearities in (2.3.1) are odd ,

t ha t is f (x ,y) = -f(-x ,-y), g(x ,y) = -g(-x ,-y) . Prove that (2.3.1)

has a centre manifold y = }i(x) with li(x) = -h( --x ). [The example

= -x 3 , ~ = -y, shows that if h is any centre manifold for (2.3.1) .1

then h (x) ~ -h(-x) in gencral .J

I
I

- 
-
~~~
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2.7. Global Invariant Manifolds for Singular Perturbation Problems

To motivate the results in this section we reconsider

Example 3 in Chapter 1. In that example we app lied cen tre manifold

theory to a sys tem of the form

y ’ = cf (y , w)

w ’ = -w + y2 - yw + ~f (y , w) (2.7.1)

= 0

where f( 0,0) = 0. Because of the local nature of our results on

cen tre manifolds , we only obtained a result concerning small initial

data. Let v = -w(l+y) + y2 , then we obtain a system of the form

y ’ = Cg1 (y, v)

v ’ = -v + cg 2(y,v) (2 .7 . 2 )

= 0

where 
~~

(O
~ O) 

= 0, i = 1 ,2. Note that if y ~ -1 , then (y, O ,O)

is always an equilibrium point for (2.7.2) so we expect that (2.7.2)

has an invariant manifold v = h (y , i)  defined for -l c y < m say

and suff icient ly smal l .

Theorem 4. Consider the system

[ x ’ = Ax + tf(x ,y,i)

= H y + t~g ( x ,y, L )  ( 2 . 7 . 3 )
r
5~ 

L~~ 0 ]
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~diere x € 1k”, y € 1km and A ,B are as in Theorem 1 . Suppose al so

that f ,g are C2 wi th f(0,0,0) = 0, g(0,0,0) = 0. Let m > 0.

Then there i s  a ó > 0 such that (2.7.3) has an invariant manifold

h ( x ,L) , (x l m , 1 1 1 ~ , wi th {h(x ,c)( < C (t -( , where  C is  a

c o n s t a n t  which depends on m ,A ,B ,f and g.

I
n

!“~°°~~
. Let ~‘:  1k -~~ [0 ,1) he a C func ti on wi th ~‘(x ) I if

I x l m and ~p (x) = 0 i f  l x i > m + 1. Define F and G by

- ‘  F(x ,~’ ,i) = 
~f(xv (x),y,~~), f l ( x ,y,~ ) = L g (x ~~~( X ) , y, L ) .

We can then prove that the system

5)

x ’ = Ax + F(x ,v ,i)
( 2 .7  .4)

= By + (~ x ,y, t~) - -

h a s  an  i n v a r  I an t man i fo l d V h (x , L )  , x € 1k” for suf  i i  c i cnt lv 
- 1

small. The p roof  is essentially the same as t h a t  g i v en i n  t h e  p roof -

of The ore iu  I so we o m i t  t h e  deta i is.

R e u i ; i r k .  I x = ( x 1 , x 2 , . . . ,x~,) t hen we can similarl y prove th ’

‘~~~st ei~ce o f  h(x t -) f o r  rn ‘- x. ‘-— I  1 1
The flow on the invariant manifold is given by the equation

= Au + L i  U’, h ( u , t- ) )  . ( 2 . 7 . 5 )

--
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With the obvious modifications it is easy to show that the

stability of solutions of (2.7.3) is determined by equation (2.7.5)

and that the representation of solutions given in (2.4.5) holds.

F inally, we state an approximation result.

Theorem 5. Let ~ : 1R~~
1 ÷1km sa t isf y P(0,0) = 0 and

(Mfl (x,c)( < Cc~ for (x < m where p is a positive integer ,

C is a constant and
4

(M~P)(x,~ ) = D~ P(x ,c)[Ax + £ f(x ,$(x,C))) - Bq (x,c) - Lg (x,~~(x ,L)).

Then , for (x ( < m , H

Jh(x ,c) - ~(x,~ )( <

for some cons tant C 1.

Theorem 5 is proved in exactl y the same way as Theorem 3 so we

omit the proof.

For further information on the application of centre manifold

theory to singular perturbation problems see Fenichel 120] and

Henry [30) .

C 
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CHAPTER 3

E X A M P L E S

1
3.1. Rate of Decay Estimates in Critical Cases

In this sec t ion we study the decay to zero of solutions of 1the equation

r + f + f ( r )  = 0 ( 3 .1.1) 
-

where I is a smooth function with

f ( r )  = r3 + ar5 + 0 ( r 7 ) as r 0, (3 .1.2)

where a is a constant. By using a suitable Liapunov function it j
is easy to show that the zero solution of (3.1.1) is a s y m p t o t i c a l l y  • 1
stable. However , because f’(O) = 0, the rate of decay cannot he

de termined by lin earization. 

~1In [8] the rate of decay of solutions was given using

techniques which were special to second order equations. We show

how cen t re manifolds can he used to obtain similar results. -

We firs t put (3.1.1) into canonical form . Let x = r +

V = f , then

* = -f(x-y) (3.1.3)

5’ = -y  - f(x-y).

B~~’ Theorem 1 of Chapter 2 , (3.1.3) has a centre manifold y = hex ).

_ _  _ _  

j
~ .

..0. — -
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By Theorem 2 of Chapter 2, the equation which determines the

asymptotic behavior of small solutions of (3.1.3) is

= -f(u-h(u)). (3.1.4)

Using (3.1.2) and h(u) = 0(u2),

= -u3 + 0(u4). (3.1.5)

Wi thout los s of generality we can suppose that the solution u(t)

of (3.1.5) is positive for all t > 0. Using L’L-Iospital’s rule ,
F I.

~ ~u(t) .~~~
- 1 = L i m ~~’ = Lim t I s ’ds.- , i . t-,.~ U t -..w

Hence , if w(t) is the solution of

1 •
= -w 3, w( 0 )  = 1, (3.1.6)

then u(t) = w (t+o(t)). Since

w(t) = L + Ct 3/2 
+ 0(t 5’2) (3.1. 7)

where C is a constant , we have that

u(t) = ‘-~ t 1”2 + o(t 1”2). (3.1.8)

To obtain fur ther terms in the asymptotic expansion of u(t), we

r —.--— -
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I
need an approxima tion to h(u). To do this , set

St

4

(M~P)(x) = -4~’(x)f(x- q~(x)) + ~~x) + f(x-4 (x)). 
--.1

If P(x) = -x 3 then (M~P)(x) = 0(x 5) so tha t by Theorem 3

of Chap ter 2, h(x) = -x
3 

+ 0(x5). Subsi tut ing this into (3 .1 .4)

we obtain - 
-

-i

= -u 3 - (a+3)u 5 
+ 0(u7). (3.1.9) i

Choose I so that u(T) = 1. Dividing (3.1.9) by u3, integrating

over [T,t ] and using (3 .1.8), we obtain 
-

. 5

w~~ (u(t)) = t + constant + (3+a) J u2 (s)ds (3 . 1 .10)
T

where w is the solution of (3.1.6) . Using (3.1.8) and (3.1.9), 51

J
t ) 

= ~(s)ds 
+ 

S 

.
- I

1 0 LI - 

(3.1.11)

~1/1= -in t + constant + 0(1).

Sub stituting (3.1.11) into (3.1.10) and using (3.1.7),

l’2 -3/2 2 
5

u( t) = L.~ t / - 
t [(a+3) in t + C] + o (t 3” ) (3.1.12)
4/~

where C is a constant.

If x(t),y (t) is a solution of (3.1.3), it fol lows from

Theorem 2 of Chapter 2 that either x (t),y(t) tend to zero cx-

ponent ially fas t or

p

- - 5- 
_ _.~__i_ -—-~ i~~~~~

__
__

~— _
~~
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x(t) ±u(t), y(t) = u3(t)

where u(t) is given by (3.1.12).

3.2. Uopf Bifurcation

There is an extensive literature on Hopf Bifurcation (1 ,13 ,15 ,

16,27 ,30,35,39,40,42,46), so we only given an outline of the theory.

Our trea tment is based on [151.

Consider the one-parameter family of ordinary differential
2equations on R ,

x = f(x ,c’), x €~~
2

such that f(0,U) = 0 for all sufficiently small u~ Assume that

the linearized equation about z = 0 has eigenvalues y(u) ± j w ( i x )

where y(0) = 0, w(0) = * 0. We also assume that the eigenvalues

cross the imaginary axis with nonzero speed so that y ’(O) * 0.

Since y ’(O) * 0, by the implicit function theorem we can assume

without loss of generality that y(U) = .&~~ By means of a change of

basis the differential equation takes the form

* = A(cL)x + F(x ,U), (3.2.1)

5 where

J~~U ~w( ufl
A(U) = I L~

(U) a

F(x ,U) - O ( I x l  ) .

I 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - 



‘-S 

- -5--—- -- -  -----—-5- 
_

~~
5-I=_ - _ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -—

I -
-

~~~~~~~~~ 

i
tinder the above conditions , there are periodic solu t ions of 

I
(3.2.1) bifurcating from the zero solution . More precisely, for ~~

small there exists a unique one parameter family of small amplitude I
periodic solutions of (3.2.1) in exactly one of the cases

(i) u 0 , ( i i )  u = 0, ( i i i )  U > 0. However , further conditions

on the nonlinear terms are required to determine the specific 1’
a

typ e of bifurcation.

J
Lx ercise 1. Use polar co-ordinates for 

-

= Ux 1 
- Wx , + Kx 1(xj+xp I

x2 
= ~~ + + Kx,(x~~4-x~~)

to show tha t case ( i ) applies if K > 0 and case (ii i ) appl ies if

K~~~ 0.

To find peri odic solutions of (3.2.1) we make the substitution I
= ~r cos ~~~~, x, = ~r sin ~~~~, U L~~~ , ( 3 . 2 . 2 )  •

1

where L is a func t ion of u , Af ter subs titut ing (3 .2 .2) into (3. 2.1 ) -

we obtain a system of the form

= L [ur + r C 3(~ ,U L ) ]  + L r 3C4 (~ ,u L)  + 0(L3)

(3.2.3)
= 

~o + 0 ( L ) .

We now look for period ic solutions of (3.2.3) with L -, 0 and r

~~ -
- -  - - 5- -.
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near a constant r0. If C3 and C4 are independent of e and

the higher order terms are zero then the first equation in (3.2.3)

take s the form

1’ £ [ U~~ + ~r
2

J + ~
2Kr 3 (3.2.4)

Periodic solutions are then the circles r = r0, where r0 is a

zero of the right hand side of (3.2.4). We reduce the first

equation in (3.2.3) to the form (3.2.4) modulo higher order terms

by means of a certain transformation . It turns out that the

constant ~ is zero . Under the hypothesis K is non-zero , it is

straightforward to prove the existence of periodic solu tions by

means of the implicit function theorem . The specific type of

bifurcation depends on the sign of K so it is necessary to ob ta in a

formula for K.

Let F(x ,a) = 1F 1 (x1,x ,,u), F,(x1,x 2,~ )]
T and let

= B~(x 1,x 7, a) + B~ (x 1,x ,, u) + 0(x~ +x~) (3.2.5)

where B~ is a homogeneous polynomial of degree i in (x 1,x ,)- .

Substituting (3.2.2) into (3.2.1) and using (3.2.5) we ob tain

(3.2.3) where for i = 3,4,

= (cos e ) B~ 1 (cos 0 , sin ~,a) (3 . 2 . h)
+ (sin t3 ) B 

1 (cos 0, sin L3 ,c*).

I L
U
_

— ~~~~~~~~~~~~~~~~~ 
—
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Lemma 1. There exists a coordinate change

r = r + Lu
1
(r ,U ,u ,C) + L u ,(r,O ,u ,c)

which transforms (3.2.3) into the system

3r = Lur  + L~~r K + O(t— )

( 3 . 2 . 7)
U = + 0(L)

where the constant K is given by

K = (l/2n) J [C4(U ,0) - w~ ’C3(u ,0)D3
(u ,0)1dU (3.2.8)

where C3 and C4 are given by (3.2.6) and

D
3

(U ,0) = cos UB~~(cos U , s i n  u ,0) - (sin U)B~ (co s U , sin U , 0 ) .

The coord inate chang e is cons t ruc ted via avera g ing . W e refer

to u s )  for a proof of the Lemma .

If K = 0 then we must mak e fur ther coordinate changes. We

assume that K * 0 from now on.

Rec all that we are looking for periodic solutions of (3.2.7)

w i t h ~ - 0 and ~ nea r  a cons tan t r 0. This suggests that we set —

= - s g n ( K ) L  and r0 = K 1 ” . The next result gives the

• j existence of periodic solutions of

• r = L [-sgn(K)i~ + i 3K] + O(L~ )

( 3 . 2 . 9 )U = + 0 ( L )

I 
- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5 - : -
~~i~ ~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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wi th i - r0 small.

Lemma 2. Equation (3.2.9) has a unique periodic solution for L-

small and ~F in a compact region either for L > 0 (when K < 0)

or ~ 0 (wh en K > 0 ) .  Als o

= r0 
+ 0(c), U (t,L) = u

0 t + 0(L)

and the period of the solu t ion 1 ( L )  is g iven by -
‘

1 ( L )  = (2hh/w o) + 0(c).

The periodic solu tion is stable if K 0 and unst;ihle if K > 0.

Lemma 2 is proved by a simple application of the implicit func - L

t ion theorem . We again refer to [15] for a proof.

Lemma 2 al so proves the existence of a one parameter family of

per iodi c solut ions of (3 .2 .1 ) .  We cannot immediately assert that

this famil y i s unique however , si nce we may have los t some period ic

soluti ons by the ch oi c e of scal ing , i.e. by sca l i n g  u -
~~ UL and

by choosing c = -sgn(K)u .

In order to jus t if y the scaling suppose that x 1 
= R cos U ,

x , = R s in i i s a period ic solut ion of (3 . 2.1 ) b i furca t ing f rom

x 1 
= x , = 0. Then R sa t isf ies

I) R = u R + 0(R~ ).

When R a tt ains it s maximum , R = 0 so that R = 0(a). This

I
- -— ---SS S~—~-*  

- -

• -—..5-•----~~~~~~~ —_-S — 5  
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justifies the scaling a -~- uc . A similar argumen t applied to

periodic solutions of (3.2.7) justifies the choice of c ,

‘Ihe orem. Suppose that the constant K defined by (3.2.8) is non-

zero . Then (3.2.1) has a unique periodic solution bifurcating from

the orig in , either for a > o (when K < 0) or a < 0 (when

K > 0). if x = R cos U , y = R sin U then the periodic solution

has the f orm L

R (t,u) = K ’I ”2 + °( I~ I)
U ( t , u )  = u

0 t + 0( 1 u1 h12 )

with period 1( a )  = ( 21 1/ u
0

) + O (Iu ) h/2 ) .  The periodic solution is

stable if K < U and unstable if K > 0.

F in a l l y , we note tha t s inc e the value of K depends only on

the nonlinear terms evaluated at u 0 , when applying the above

‘I’heorem to (3 .2 .1) we onl y need assume that the eigenvalues of A~u)

cros s the imaginary ax is wi th non- zero speed and that

ro -
~~~~~~~~

- \ ( 0 )  =

Lwo 0

w it h non-zero .

3.3. Uopf Bifurca tion in a Singul :tr Perturbation Problem

In this section we stud y a s ingular per turba t ion problem which

ar i ses from a ma thema t ical model of the immune response to

.1

_ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _  _ _ _~~~~~~~~~~ ~~~~~~~~~~~~~ _ _ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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an t I gen 143) . The cqua t ions arc

L X - [x
3 

+ (a  - - 1, ) x  + b - 

~i

~(l-x) - a - ~~ab (3.3.1)

I) —t 1 at) + ‘1 2
1)

whe re z , , ‘1 a rc  im s I t I ye parameters . I i i  t h e  above model a

and b repre sent certain c o n c e nt  rat tons so t iwv must be non -

riegat lye . Als o , x mea sures the st imu lat ion of t he svs tern and it

i s  s c a l e d  so that x ~ I . The stimul a tion Is a s s u m e d  to take

place on .i lUtic h f a s t  e F f i IflC sca Ic t h a n  the r e sp o n s e  so t h a t  I s

v e r y small.
4 .,

I’h&’ . l h OV C  pr’ol)I efli W~ s ~~Lld i ed in 1 43 1 and we hr le t Iv out line t he

met  hod us ed by Me rr il l  to prove the cx i s tenc e of per 0(1 I C  SO I t i t  i o n s

f I. 3. 3. 1) . Pu t t t r i g  L = 0 i i i  thi.’ I i 1’S t C( ILIa t ion in (3 . 3 . 1)  we

oht a in

+ (a - 

~)x + h - — 0. (3.3.1)

~~~~~ lv Ins (3 . ~~~. 2) for x as a function of a ari d b i~e ob t a i n  ~

and ‘.uhs I i t  t i t  1 rig th i s Into the second equa t ion in (3. 3 . 1) we obt a in

- 
~ 

( 1  I ( a  , h 1 1  .i ‘1 1 ~
. (3. 3 .3)
1, — — ‘~~ah + ‘N b .

_ _ _ _ _-

~~~
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[Is ing ~ as the parameter , it was shown that r e l a t i v e  to  a ce r t a  i n

equ ii i  hr ium 1)0 m t  (a () , b0) a Ilop f hi furcat ion takes place in

(3.3 .3). By appealing to a result in s i n g u l a r  perturbation t h e o r y

it wa~ concludeJ that for L suffic ientlv small , (3.3.1) also has

a periodic solution.

We use t lie theo i-v g iven in Chapter ~ to obta in a s l iii i i  a r resul t

Let (x0 , a 0 , h 0 ) he a fixed j)O m t  of (3.3 . 1). If h o * 1) then

a0 ~~, / ‘y
1 

and X 0~~a () 
s a t i s fy

x0 + (~-~
- - -~-)x 0 + 1)

0 
- -

~~
- = 0,

(3 .3.4)

1 ‘1 ,
-
~~

- ó (1-x 0) 
- 

~~
—

~~
- - 

~~~ = 0.

Rec a l l  a iso that for the biological pr~ h1 em , we must have 1)
0 0

and x 0~ 1. We a s s u m e  for the moment that X
() 

and  b 0 s a t  is f\

( 3 . 3 1) and thesc i-es t r I ~ t 01) 5 . The rca ii tv of these so I u t  i o n s  ar c

cons idered later . Ice let = ‘1 ~/‘1 tor the res t  of t h i s  sect ion.

Let v = a - a~~, = h - h 0 ,  w = -
~~~ (x-x ~ ) - x 0y 

- where

= 3x~ + a 0 
- . Then assuming ~~

- is non- z e r o ,

LI:. = g (w  . y • , c )

= i , ( w , y , z , L )  ( 3 . 3 . 5)

= f 3 (w . v ,~~, i )

w h e r e

1~

______ 

•
~~~~ - - 

_:~~~~~~~~
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g(w , y , z,L) = f
1

(w ,y , z ,C) - Cx0f2 (w ,y,z,c) - Cf 3 (w ,y, z,c)

f1 (w , y, z,C) -‘~w + N(w+x0y+z ,y)

f2(w ,y, z,c) = (-~- 41 ’1 x0 - I - ‘i
1b0

)y + (-
~
. rS~~

1 
- 12)z  + -

~~ P ’’w - y
1yz

f3 (w ,y, z ,c) = -y
1b0y 

- Y1yz

N (U ,y) ~~-2~ 3 + 3~~
1
x0U

2 
- yU .

In order to apply centre manifold theory we change the time

scale by setting t = Cs. We denote differentiation with respect to

s by ‘ and differen tiation with respect to t by . Equation

(3.3.5) can now be written in the form

= g(w ,y , z,c)

y ’ = Lf .~(w ,y, z ,c)
(3.3.6)

z ’ = cf 3 (w ,y,z,c)

C ’ = 0.

Suppose that ‘+‘ > 0. Then the linearized system corresponding to

(3.3.6) has one negative eigenvalue and three zero eigenvalues. By

Theorem 1 of Chapter 2 , (3.3.6) has a centre manifold w = h(y,z,L).

By Theorem 2 of Chap ter 2 , the local behavior of solutions of (3.3.6)

is determined by the equation

= cf
2 (h(y, z,c ) ,y, z,c)

(3 .3 .7)
= cf

3(h(y, z,c),y,z,c)

• or in terms of the ori g inal time scale

___— —

~~~~~~~i i :~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~ = f~ (h(y ,z,L),y,z,L)
(3.3.8)

± = f 3 ( h ( y , z , L ) , y , z , L ) .

We now apply the theory given in the previous section to show that -
~~

(3.3. 8) has a periodic so lut ion bi furca t ing from the origin for

certain values of the parameters.

‘[‘he linearization of the vector field in (3.3 .8) about

v = 0 is given by

r~ 
~~~

1
X

0 
- 1 - y 1h0 

- Yll
.1(c) = + 0 ( c ) .

I ~~~~~~~~ 0 I1 0

If (3 .3.8) is to have a Ilop f bifur cation then we must have

t r a c e ( J ( L ) )  = 0 and ~~~ - 
‘1 , 0.  Prom the previous anal y sis ,

we must also have that x 0,h0 are s o l u t i o n s  of (3.3.4) with

x0 1 ‘- 1 , ~~ ‘ 0 and ‘~~ ~‘ 0. We do not attempt to obtain the

general conditions under wh ich the above conditions are satisfied ,

lsC only work out a specia l case.

Lemma . Let ‘1 1 2’1- ,. Then for each L > 0, there exists L’ ( t ) ,

• X
0

( t  ) , h0(L) such that 0 2X 0 ( L )  1 , h0L) 
> 0, ~ -. 0 ,

~~(~~ )y  - 2y, ~ 0, trace J(L ) = 0 and (3.3.4) is satisfied.

- - S
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Proof. Fix and with < 2Y~ . If x0,b0,6 sa t isf y the

second equation in (3.3.4) then

ist race(J(0) )  = -~~ [x 0
qi~ - ~i (1-x 0)12 

1It is easy to show that there is a unique x0(0) € (0,2-) that

satisfies trace(J(0)) = 0. Clearly ‘P > 0 for this choice of

x (0). We now obtain b (0) and 6(0) as the unique solution of

(3.3.4) and an easy computation shows that b0(0) > 0, 6(0) > 0

and 6(0)41’l - 21
2 

> 0. By the implicit func t ion theorem , for

L , - x0(0), b0 
- b0(0) suff iciently small , there exis t s

6(c ,x0, b0) = 6(0) + 0(E) such that
I - -

SI .

trace(J(c)) = .~L ‘P~
1x0 - I - 11b0 + 0(c) = 0.

After substituting is = 6(c ,x0,b0) into (3.3.4), another app l i c a -

tion of the implicit function theorem gives the result. This compl etes

the proof of the Lemma .
- - ti

From now on we f ix and wi th < 2’N. Using the

same calcula tions as in the Lemma , for each c and is with t

and is - 6(i) sufficiently small there is a solution x0(i ,~ ),

U h0(L ,5) of (3.3.4). Writing x0 
= x0

(c ,6(c)) and trace (J) as a

func t ion of 6 , we have tha t

y
16(c)’P

~~ 
3

~~ (trace(J(is)))~ 4(1-x 0) 
[ o Y 1x 0 +

+ (2y ,-y 1
)x
0 

- 12y
1
x
0
) + 0(E) ‘. 0,

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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if t. is sufficiently small. Hence , the eigenvaiues of J(is)

cross the imaginary axis with non-zero speed at 6 = 6 ( c ) .

Let y1 = t(c)z,, z1 
= m(c )y where

= (y 1b0 ( c ) ) ~~~
2 

+ 0(e), m(E) = [(6/2)’P l 
- 12 1 1/ 2  

+ 0( c) .

For 6 6(c), (3.3.8) in these new coordinates becomes

= -w ozi 
- 11m

1(C)y 1z1

= w
0y~ 

+ m(e)(6/2)’P’1h(m ”1 (c )z 1, £~~‘(E)y1,e) - Y 1~~~
1( C ) y 1z 1 

—

where 
- ,

-l
= y1b0(c)[(6/2)~ - + 0(c ) .

To apply the resul ts of the las t sec t ion , we need to calculate

the K(c) associated with (3.3.9). We shall show how K(0) can be

calcula ted ; if K(0) is non-~ er- then K(c) will be non-zero also.

• To calculate K(0) we need to know the quadratic and cubic terms in

(3.3.9) when C = 0. Thus, we have to find h(y ,z,0) modulo four th

order terms .

Let

(Mq)(y, z) = -g(rP (y,z),y,z,0) (3.3. 10)

Then by Theorem 2 of Chapter 2, if we can find • such that

--  - - - —-5- - - - — —~~~~~~~~~~ -~~~~- — -~~~~~~—~~~~ 
- - — ~~~-~~ - --~~~~~~~~~~~~~~~~~~ 

- - -
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(M4r)(y,z) = O(y4+z4) then h(y,z,0) = P (y, z )  + 0(y4+z4). Suppose

that

= 

~ 2 
+ $3 (3.3.11)

where is a homogeneous polynomial of degree j. Substituting

(3.3.11) into (3.3.10) we obtain 0~

I.

(M~)(y, z) = 
~$2(y,z) 

- 3~~~x0(x0y+z)
2 

+ y ( x 0y + z )  + 0((y~
3 

+ 1 z 1
3) .

h ence, if

-2 2 1
~2 (y, z)  = 3’P x0(x0y+z) - 

~P~~
’ y(x~ y+z) (3.3.12)

then (M’P)(y,z) = 0(~ y~
3 

+ z1
3). Substituting (3.3.11) into

(3.3.10) with $2(y,z) given by (3.3.12), we ob tain

(M~ ) (y ,z) = 
~$3(y,z) + 

~~
2(x0y+z)~ 

- 6~~~ x0(x 0y+z)$ ,(y, z)

+ yP
2

(y, z) + 0(y4+z4).

Hence ,

-3 3 - ,h(y,z) = iP 2 (y, z ) - rv (x0y+z) + 6’P x0(x0y+z)’p 2(y, z) -

- ~~~y$2 (y, z) + 0(y4+z4)

L where $2(y,z) is defined by (3.3.12). K(0) can now be calcula ted

- _ _ _  _ _  

~~~~~~~~

-- •• • 
_ _ _ _ _
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~1

as in the previous section. The sign of K(0) will depend on - t

and 
~~ 

If K(0) is non-zero then we can appl y Theorem 1 of .‘

Section 2 to prove the existence of periodic solu tions of (3.3.1).

The stability of the periodic solutions is determined by the sign of

K(0). If K(0) is zero then we have to calculate K (e). .~

a-

I.

S i

j I-
p

Il
I ~•-

.~1 
-— ~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



CHAPTER 4
BIFURCAT I ONS WITH TWO PARAMETERS IN TWO DIMENSIONS

4.1. Introduction

In this chapter we consider an autonomous ordinary differ-

ential equation in the plane depending on a two-dimensional

parameter c. We suppose that the origin x = 0 is a fixed point

for all c . More precisely, we consider
I.

* = f(x,c) , x € ~ 2 ~ = (L 1, E
2

) € ~ 2

(4.1.1)
f (0 ,c) 0.

The linearized equation about x = 0 is

= A(c)x,

and we suppose that A(0) has two zero eigenvalues. The object is

to study small solutions of (4.1.1) for (c 1,c,) in a full

neighborhood of the origin. More specifically, we wish to divide

a neighborhood of t- = 0 in to distinct components , such that if

are in the same component , then the phase portraits of (4.l.l)
~

and (4.1.1) are topologically equivalent. We also want to describe
H

- ~- - the behavior of solutions for each component. The boundaries of

the components correspond to bifurcation points.

Since the eigenvalues of A(0) are both zero we have that

j either (i) A(0) is the zero matr ix , or (ii) A(0) has a Jordan block ,

__________________ 
H
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E o f l
A(0) = I

L° 0J 
-

•

There is a distinction between (i) a~d (ii) even for the s tudy of .1

f i xed poin ts, tinder generic assumptions , i n Case (ii), equation

(4.1.1) has exactly 2 f ixed points in a neighborhood of the or igin .

For Case (i) the situation is much more complicated (1W ’ , 251 .

Ano ther dis t inc t ion ar ises when we cons ider the ei genvalue s o f I
. \( i ) .  We would expect the nature of the eigenvalues of •~(c) to

determine (in part) the possible types of bifurcation. If

F1 01

A(i) =

L°
then the eigenva lues of A ( c )  are a lways real so we do no t  e x p e c t

to obt a i n periodic orb it s surroundin g the ori gin. On the other

hand if

ro ii
A(i) = I (4.1.2)

-
~~~~~ LL1 

i~J

then the range of the cigenvalucs of A (i) is a neighborhood of

the origin in ~~~~, that is , if z is a small complex number t hen
A (t~) has an eigenvalue for some ~~.

We shall assume from now on that A(~-) is given by (4.1.2.).

-J
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _  
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Takens [49, 50] and Bodganov [see 2] have studied norma l

lorms for local singularities. Takens shows , for  examp le , that any

perturbation of the equation

2x l 
= x ) + x 1, x 2 =

is topologically equivalent to

= X - ,  + X~~~ , X , = C
1 

+ € ,x 1 -

f o r  some There are certain difficulties in applying these

results since we must transform our equation into normal form , modu lo

h ii ~her order terms .

En (39, p. 333-348], Kopell and Howard study (4.1.1) under the

assumptions that A(i) is given by (4.1.2) and that

-~~ 
2f

- -  —
~
-
~

- (0,0) * 0
~xi

where 1, is the second componen t  o f  I. Thel r a p p r o a ch  cons i st s

of a systematic use of s c a l i n g  and app lications of the implicit

function theorem .

In this chapter , we use the same techni ques as Kopell and

JIoIs ;i rd to study (4 . 1 . I ) when the nonl m ean tics are cubic. Our

L results confirm the conjecture made by Takens [491 on the bifurcation

s~~~t of (4.1.1).

(he result s on quadratic non lineariti es are given in Section 9

• in the form of exercises. Most of these results can be found in

kope I I and Howard [39]

- 1 . 2 .  Prelim inaries

Consider equation (4.1.1) where A (c) is given by (4.1.2). We

also suppose that the lineariza tion of f(x ,t.) is A(c )x , and tha t

— —- 
~~~~~~~~~~~~~~~~~ ~~~ —~~~~~ ~-—
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f ( 0 ,t-) E 0, f(x ,t-) E - f ( -x , t- ) .  (4.2.1)

The object is to stud y the b e h a v i o r  of all small solutions of (4.1.1)

for t. in a full neighborhood of the origin. Equa t ion (4 . 1 .1) is

stil l too general , however , so we shall make some additional hv - I
pot hese s on the nonlinear te rms. Se t f = (f

1 f2)
T,

3 3
= -

~~
-----

~~
- f~ (0 ,0), 13 —~~-,~- t j O , 0 ) .

-

( l i i )  ~‘
. 

* 0

(((2) 

:~ 
:1

(113) —s- 1
~ 
(0 ,0) = ()

ax 1

(Hi ) implies that for small i , (4,1.1) has either 1 or 3

fixed points , tinder (Hi), i t is easy to show that by a change of

co-erd inates in (4.1.1), we can assume (113) (see Remark 1).

Ice assume (113) in order to s imp l i f y the computations.

Und er (111) we can prove the existence of families of periodic

orbits and homoclinic orbits. Under (H1)-(113) we can say how many

periodic orbits of (4.1.1) exist for fixed t- . The si gn of 13 will
determine the direction of bifur cation and the stabilit y of the

periodic orbi ts among other things.

From now on we assum e (Hl)- (113).

- - The main results arc given in Figures 2-5 . Sections 3-8 of

this chapter show how we obtain these pictures. The pictures for

0 are ob ta i ned by usin g the chan ge of var iables x 1
• -

~~~~~~ and t • -t.- -

- ~~—-- -- ~
S
~~- 

_ _ _ ~ _ _.
~~~‘—.~— — —-—~~~~—— •A=_*-.- ~~~~~~
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Level Curve s of 11(y1, v ,) = (y’j 2) - (y~/2) + (y~ / 4 ) .

FIG . I
6 2

2

Bifurca tion Set for the Case ~ < 0, 13 0.

FIG. 2

FLG . 3
Bifurca tion Set for the Case ~ 0 , 13 0 .Ii
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-The cases u > 0 and ‘~ ~ 0 are geometrically different.

The techniques involved in each case are the same and we on~ v do the

more d ifficult case a ~ 0. The case ~ > 0 is left for the

reader as an exerc i se.

From now on we assume a 0 in addition to (H1)-(I-13). Note

that this implies that locally, (4.1.1) has 1 fixed point for

< 0 and 3 f ixed point s for 
~~~~ 

> 0.

4.3. Sca 1i~ g

We scale the variables in equation (4.1.1) so that the first

componen ts of the non-zero fixed points are given by ±1 + 0(c).

To do this we introduc e parame ters 1.i ,6, scaled variables y1,y2

and a new time i~ by the relations

6 = IC l~~~
h

I
u/2 , 

~2 
l a I ~~~~~

2
6~~~, x 1 = 6y1, x2 = ó2 I a f

h/2 y,,

=

For (~.i , 6) in a neighborhood of the origin , (c 1, t- ,) belong s to

a reg ion of the form f(~ 1, c2): ~
E
1 I < LØ, Li 

< (cons tant ) c~ }.

The y 1 are assumed to lie in a bounded set , say ~ M. A

further discussion of the scaling is given in Sec tion 6. J
Af ter scaling (4.1.1) becomes

+ ó2g 1 (I~,6,y)

(4.3.1)

- 

- 

~
‘2 

= sgn(e1)y 1 
+ ~iy2 - v~ + 6yy ~~y ,  + cS2g2 (I.i ,6,v)

] 
~~A

• - ~~
_
~~~~~~~ S~~~~~~~~~~~~~~~~~~~ _ ~ ~- -- — -~-,~— -~~
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where the dot means differentiation with respect to t , y

and g~(l.i,ó ,y) = 0(1). The size of the bounds on the g1 depends

on M ,~i ,6. We write t for t from now on.

The cases > 0 and c
1, 

< 0 are treated separately .

4.4. The Case > 0 H

With > 0, equation (4.3.1) becomes

~~
. 

~1

= y2 
+ 6’g1~~

i ,6,y)
(4.4.1)

= y1 + i.iy2 
- y~ + 6yy~y2 + 62g2(p,6,y).

L

- 

Let H(y1,y2) = (y~ /2)  - (y~ /2)  + (y~f4). Then along solutions

of (4.4.1),

H(y1,y2) 
= 
~~~ 

+ 6yy~y~ + 0(6 2). (4.4.2)

Note that for p = 6 = 0, H is a first integral of (4.4.1).

The level curves of H(y1,y2) 
= b consist of a figure of eight

-
~~~ if b = 0, and a single closed curve if b > 0 (see Figure 1).

L For b > 0, the curve H(y1,y2) = b passes through the point

= 0, y2 (2b)~~
2. For b > 0 and 6 sufficiently small , we

- prove the existence of a function u = ~1(b,’S) = -yP (b)6 + 0(62) .

[ For b > 0, (4.4.1) wi th i-i = p
1 (b ,6) has a periodic solution

passing through the point y 0, y (2b)~~
2 . With ia i-i (0,6),

(4.4.1) has a figure of eight solution .

For fixed p ,S , the number of periodic solut ions of (4.4.1),

surrounding all three fixed points , depends upon the number of
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solu t ions of

= ~1(b,6) = - Y P ( b ) 6  0(62). (4.4.3)

We prove that P(b) -‘ ~ as b -~~ and that there exists b1 ~ 0

such that P ’( b )  < 0 fo r  b < b 1 and P’ (b)  > 0 for b > b1. -~~~~

rhese proper ties of P(b) determine the number of solutions of

(4.4.3).

Suppose , for s implicity of expos it ion, that ~1 (b ,ó) E - ‘YP (b)o

and that y < 0. If 0 < b., < b ., then there exists b.. > b such
A- .

-
~ 1

that u1(b ,,6) u 1 (b3, 6). Hence , if u = i.1
1 (b 2 , 6), then (4.4.1)

has two periodic solutions , one passing throug h y1 
= 0, y 2 

= (2b 2)
112 ,

• the other passing through y = 0, y = (2b 3)~
”2 . If ~ > ii (0 ,6),1 2 1

then (4.4.1) has one periodic solution surrounding all three fixed

points. Finally, if ~ = ~ (b 1,ô), then the periodic solutions

coinc ide.

In Figure 4 , the periodic solutions surrounding all three fixed

poin ts in regions 3-5 correspond to the periodic solutions of (4.4.1)

which are parame trized by i-i = ~1 (b ,6), b > b1. Similarly the

“inner” periodic solu tions in region S are parametrized by

0 < b < b 1. The curve L1 in (c 1, c2) space corre-

sponds to the curve p = p
1

(0 ,6). Similarly the curve L2

corresponds to the curve p = p
1(b1,6) (see Figure 2).

In general p
1(b,6) is not identically equal to -yP (b)S ,

but the results are qualitatively the same . For example , we prove the

existence of a function b1(6) = b1 
+ 0(6), such that if p , ó

satisfy ~i = ~1 (b 1 (6) , 6), then equation (4.4.3) has exactl y one

I~~
_

- - -
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solution. The curve p = i-i 1 (b 1(6),6) which is mapped into the 
- 

-

curve L2 in 
~~~~~~ 

space , corresponds to the points where the

two periodic solutions coincide.

If b < 0, then the set of points for which H(y1,y2) = b

consists of two closed curves surrounding the points (-1 ,0) and

(1,0).  For 0 < c < 1, we prove the existence of a function
= = - yQ(c)ó + 0(62). For ~ = p

2 (c ,6), (4.4.1) has a

periodic solution surrounding the point (1,0) and passing through

y 1 = c , y, = 0. Using f(x) = -f(-x) , this proves the existence

of a periodic solution surrounding the point (-1 ,0) and passing

through y1 = -c , y2 = 0.

- - We also prove that Q’(c) > 0 for 0 < c < 1. Let 6 > 0

and suppose p satisfies

p
2(0,6) < -sgn(y)P < ~(l,6). ( 4 . 4 . 4 )

Then the equation p = p 2 (c ,ó) has exactl y one solu ti on . Hence ,

for fixed p , 6 sa t isf ying (4.4.4), equat ion (4.4.1) has exactly

one periodic so lu t ion surrounding (1,0). The region in (p, 6)

space , corresponding to (4.4.4), is mapped into region 4 in (~~~ 1,
c ,)

space (see Figure 2 ) .

Lemma 1. For 6 sufficiently small , there exis ts a func t ion

p = p (6) = ( 4 / 5 ) 6  + 0(6 2) such that when p = p (6), (4.4.1) has

a homoc linic orbit.

c

I
• - -  - • - -_-S •~S - ~.—--. .-a _ _____~~~~~~~ - — -- S~~~d~ s_*S -., 

- - - - - 5 -
—-I ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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Proof. Let S(~~,3), U (p ,ó) be the stable and uns table manifold s of

the f ixed point (0,0) in (4.4.1). These manifolds exist , since

for p ,6 sufficiently small , (0,0) is a saddle [23]. Let

11(p ,6,+) be the value of H ( v 1, v ,) when U(~- , 6) hits y2 = 0,

> 1 > 0. Similarly, H(p ,ö ,-) is the value of H(y1,y2) when

S(p ,ó) hits v-, = 0, y 1 
> 0. H(p ,6,±) are well defined since

stable and unstable manifolds depend continuously on parameters. -

Let I(~~,6,+) denote the integral of H(y 1, y - ,) over the

portion of U(p ,6) with y 1 > 0, y ,  > 0 from = = 0 to

= 0, > 0. Then

l1 (p ,6,+) = I(u,6,+). (4.4.5) -

Similarly, I(p ,ó ,-) denotes the integral of U(y 1,y,) over the

por tion of S(ii ,6) wi th y1 > 0, y2 ~- 0 from y1 = Y 2  0 to 
-
~~~ 

-

= 0, y, > 0, so that H(p ,6,-)  = I(p ,6,-).

Equation (4.4.1) has a homoclinic orbit (with y1 > 0) if and I ~
only if

- 
H (p ,6 ,- )  = 0. (4.4.6)

We solve (4.4.6) by the impli c it function theorem 
-

Us ing (4.4.2) and (4.4.5),

5, -, I -

= 
f ( ~~ v~~ + ~6y~~- ’~)dt ~ 0(~i + 6), (4.4.7)

where the above integral is taken over the portion of U ( 0 , 0) from

= C) to y 1 
= 0, ~~~~2 ~‘ 0. Similarl y , 

•~~ 5—~~~~~~~~ -~~-~- - -~~~~~~~- - •- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ 
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= + y 6 y~y~)dt + 0(i~
2 

+ 62), (4.4.8) 1

where the integral is taken over the portion of S(0,0) from

y1 
= y2 

= 0 to y1 = 0, y2 > 0. Using (4.4.7), (4.4.8) and

U(0 ,0) = -S(0,0),  we ob tain

= -H(p ,6,- )  + 0(p2 
+ 62) (4.4.9)

L Using (4.4.7) and (4.4.9),

-~~~~ - (H~~~~(0 ,0,+) 
- H1 (0 ,0,-)) 2 j Y ~dt > 0,

S - S

so that by the implicit function theorem , we can solve (4.4.6)

for p as a func tion of 6, say p = p (6). We now show how to get

an approxima te formula for p (6). We can write equation (4.4.6)

in the form

~ 

+ ~6 f y~y~dt + 0(p 2 
+ 62) = 0.

1 Hence , using (4.4.1) and y2 
= +[y~ - (y~/2)]~~

’2 , we obtain

L. -y ó J y2y dy
+ 4y6 2

- r p = _ _ _ _ _ _ _ _ _ _ _ _ _  + O(6~~) = - .—~~-— + 0(6 )
1 f y 2dy1

- This completes the proof of Lemma 1. 

~~~~~~~~~~~~~~~~ - - -—5-—.-—5--’~~~ -~~~ -- - - - 
.
~~~~ - ~~- - - - -— - - - •- - - -
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1
Lemma 1 proves the existence of a homoclinic orbit of (4.1.1)

when L l ,~~~~2 
lie on the curve L1 given by L

£
2 

= -(4/5)~~ {~~~ c + 0(c~
”2 ).

Using f (x ,L)  = -f(-x ,L), when C
1~~2 

lie on L1, equation (4.1.1)

has a fi gure of eight solution .

We now prove the existence of periodic solutions of (4.4.1)

surrounding all three fixed poin ts. In the introduction to this

sec tion , we stated that (4.4.1) has a periodic solution passing

through y 1 
= 0, y 2 = (2b)~~~

2 for any b > 0. in Lemma 2 , we only V
prove this for “moderate ” values of b. The reason for this is that

in (4.3.1) the g. are bounded on..>’ for y in a bounded set. In

Section 6, we show that by a simple modification of the scaling , we

can extend these results to all b > 0.

Lemma 2. Fix E ‘ 0. Then for 0 < b < E and 6 sufficiently j

small , there exists a function p = u1(b,6) = -YP (b)6 + 0(6). If

~-i = ~1(b,6) in (4.4.1), then (4.4.1) has a periodic solution

passing through y 1 = 0, y2 
= (Zb) 1”2 . As b -

~~ 0 the periodic

solut ion tends to the figure of eight solution obtained in Lemma 1.

-I
Proof. Let H(~ ,6,b ,+) be the value of H(y1,y1) when the orbit

of (4.4.1), which starts at y1 
= 0, y2 = (2b) ”2, intersects

-
• 

y2 
= 0. Similarly, H(~ ,6,b ,-) is the value of H(y 1,y,) when the

orbit of (4.4.1), which starts at y1 
= ~~~ > 2 

= - (2b)1” , is integrated

— 5— — —~~ —-- —
~~~~

.- 
~~~

-.-~~~~~ SJ~~i~
j_- ~~ 

-
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backwards in t ime until it intersec ts y2 = 0. Then (4.4.1) has a

periodic solu tion passing through y1 
= 0, y2 

= (2b)~~
’2 if and only

if

- -  H(~~,ó ,b ,+) - H(~~,6,b ,-) = 0. (4.4.10)

t j Let I(P ,cS ,b ,+) denote the integral of }1(y1,y2) over the

portion of the orbit of (4.4.1) with y > 0 , s tar t ing a t
1. y1 = 0, 

~2 
= ( 2b)~~~

2 and finishing at y
2 

= 0, y1 > 0. Similarly,
I(~~,6,b ,-) is defined by integrating backwards in time . Thus,

L

H(p, 6,b ,±) = b + I(p, 6,b ,±). (4.4.11)

1~£ Using ( 4 . 4 . 2 )  and ( 4 . 4 . 11),

1.

H(
~~
,ó ,b ,+) = b + f (~y~ + Y 6 y~ y~ )d t  + 0(p 2 

+ 62) (4.4.12)

where the above integral is taken over the portion of the orbit of

-
~~ (4.4.1) with p = 6 = 0 from y1 

= 0, y 2 = (2b) 1”2 to y1 
=

= 0 where

4b = c4 - 2c 2. (4 . 4 . 13 )

2Similarly, H(P,6,b ,-) = -H(p ,6,b ,+) + 0(p + 6 ) ,  so that

equation (4.4.10 ) may be written in the form

I

- - - - -  ~~~~~~~~~~~~~~~~~~~~~ - - 5 - —  -~ --- -~~~ -~— —~~ 
- •——-.~
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f (~y~ + y6y~y~ )dt + 0(ii2 + 62) = 0. (4 .4 .14)

Hence by the implicit function theorem , we can solve (4.4.14) to

obtain p = -yP(b)6 + 0(62) where

— f y1y2 1y1
P(b) = . (4.4.15)

J ~2~~1 H

In order to prove that the periodic solution tends to the

k figure of eight solution as b 0, we prove that

H(~~,6,b ,±) -
~~ H(p ,6,±) as b -

~~ 0. (4.4.16)

This does not follow from continuous dependence of solutions on

initial condi t ions , since as b + 0 the period of the periodic

solution tends to infinity . The same problem occurs in Kopell

and Howard (39 , p. 339] and we outline their method. For and

~“2 
small , solutions of (4.4.1) behave like solutions of the linear—

ized equations. The proof of (4.4.16) follows from the fact that the

periodic solution stays close to the solution of the linearized

equation for the part of the solution with y1,y2 small and con-

tinuous dependence on initial data for the rest of the solution .

Lemma 3. P(b) -~~ ~ as b -.-

5—.-.- 5— 5S____~
.__ 

~~~~~~~~~
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i.
Proof. The integrals in (4.4.15) are taken over the curve

y2 
= [y~ 

- (4/2) + 2b]~~
2 , from y1 

= 0 to y 1 = c where c i s

defined by (4.4.13). Thus, J0(b)P(b) = J
1(b) where

1c 2 - 4 l’2
L J~ (b) = w 1 (w~ - (w / 2) + 2b) ‘ dw. ( 4 . 4 . 17)
L -‘0

Sub stituting w = c: in (4.4.17) we obtain

t. J~ (b )  = c 
f
(cz)~~

1g (z)d :

-, -, 4 1/ ’  -1where g (:) = [ ( z - l )  + ( c / 2) ( l- :  ) ]  - . Since g (z )  < g( c )

for 0 < z < 1 , we have tha t J0 (b) — D1c
3 for some posi tive con-

stant D1. S imilarly, there exists a positive constant D, such

that J1 (b) > D2c . The result now follows .

- • 
Lemma 4 . There exis ts b 1 > 0 such that P’(b) < 0 for h < b 1

and P’ (b )  > 0 for b > b1.

Proof. It is easy to show that P’(b) = -
~~~ as b 0. Hence , by

- 
Lemma 3 it is suff ic ient to show that i f P’ (b 1) 

= 0 then

P”(b 1) 
> 0.

-
~~~~ , 4 1,1

Let r(w) = [w - (w / 2) + 2b) ~~~~. Differentiating (4.4.17)

wi th respec t to b we ob tain

= dw. (4.4.18)

In tegrating by parts in J0 we obtain1
1 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _

— ~~~~~~~~~~~~~~~~~~ - 
a~~~~h_•_ _ _ _ 5 -~_~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~ - 

-
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= (w~ -w~) dw. (4 .4 .19)

Also

= JC ~) dw = J (~~~ 
- (~~ /2) + 2b] dw. (4 .4 .20)

S im i l a r l y ,

= 

J

C (w6
~w4) ~~~ 

= 

~ r~~ 
[w2 - (~~/2) + 2b]dw . (4 .4 . 21 )

Using (4.4.18) - (4.4.21) we can express J0 and J1 in terms

of J~ and J1. A straightforward calculation yields

3J0 
= 4bJ~ + J~

L~~~~~~~~~~~~~~ 

(4.4.22)
15J 1 

= 4bJ t~ 
+ (4+12b)J~~.

Suppose that P’(b1) 
= 0. Then J0(b1)P”(b1) = J1(b1) 

-

P(b 1)J~ (b1) . Using ( 4 . 4 . 2 2) we obtain

4b1(4b1+l) (J~(b1) - P(b1)J~(b1)] = J~ (b1) [P
2(b1) + 8b

1P(b1) - 4b
1
] . (4.4 . 23)

Hence P” (b1) has the same sign as

P2(b1) + 8b 1P(b 1) - 4b 1. ( 4 . 4 . 24)

I
- -  -- -.----—--- ~~~~~~~~~~~~~~~~~~~~~~~~ -5~~~~~~~~ - -~~
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Sinc e P’ (b 1
) = 0 we have that J~~(b1) = P(b1)J~ (b 1

) .  Using —

I (4.4.22) we obtain

I 25P (b1) + 8b 1P(b 1
) - 4P(b 1) - 4b 1 = 0. (4 .4 . 2 5 )

I
I 

Usin g b1 
> 0, it is easy to show that (4.4.25) implies that

P(b 1) 
< 1. Using (4.4.24) and (4.4.25), P” (b1) has the same sign

as P(b 1) - P2 (b 1). This proves that P”(b1) > 0 as required .

I Lemma 5. For 6 suff ic iently small there exis t b1 ( ó) = b1 + 0(6),

b2 (6 ) = b2 + 0(6), where P(O)  = P(b 2), wi th the following proper ties:

I Let 6 > 0 .

1 (i) If p = p
1 (b 1 (6),6), then the equation

p = (4.4.26)

I
has exactly one solution.

I
(ii) If y <  0 and p

1 (b 1
( 6) , 6) c u < p

1 (b
2

( 6), 6), then

I equation ( 4 . 4 . 26) has exac t ly two solutions b3 (ó ) ,  b4(6 ) wi th

h3(6) = b 3 + 0 ( 5) , b4( 6) = b4 + 0(6), where b3 and b4 are

U solutions of

1 -1 -1P(b) = -p 6 y . (4.4.27)

., li r  re ~1t ho lds if y ~ 0.

ii

_ _ _ _ _ _ _ _ _ _ _ _  ________________________ —- 5- —5--- ---------~~
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(iii ) If y < 0 and p > u 1 (h 2(6),6), then (4.4.26) has

exactl y one solution b 5
( 6) = b

5 
+ 0(6), w h e r e  b 5 is the unique

solut ion of (4.4.27).

(iv) If ~ c 0 and p c p
1 (b 1(6) , 6), then (4.4. 27) has no

solutions. A similar result holds for y > 0.

Proof. By Lemma 4 , there exists b , > 0 such that P(b ,) = P(0)

and P’ (b 1) 0. Set g(z ,6) = 6 1 (p 1 (b 2+z ,6) - p
1(0,6)],

for 6 * 0 and g (z,0) = 0. Then g(z,6) = P’ (b2) z  + 0(161 + z ) .

By the imp licit function theorem there exists z(6) = 0(6) such that

= 0. Henc e, if b 2 ( 6) = b, + z(6) then p
1 (b 2 ( 6), 6) =

p
1 (0,6) . The exis tence of h1 ( 6) is proved in a s imilar way . The

rest of the Lemma follows from the properties of P(b).

We now prove the existence of periodic solutions of ( 4 . 4 . 1)

sur round ing a s ing le f ixed point.

Lemma o. For 0 < c < I and 6 sufficientl y s m a l l , there exists

p = p 2(c,6) = -YQ(c)6 + 0(6). If p = p,(c,ó), then (4.4.1) has ~

per i odic solu t ion passin g through y1 = c , y, = 0. As c + 0 the

periodic orbits tend to the homoclinic orbit obtained in Lemma 1.

Proof. Let I1(p ,6,c ,+) he the value of H(v 1, v2 ) when the o~bit

of (4.4.1) starting at y 1 = C , y ,  = 0 in tersec ts Y1 = 0, > 0. -

Similarly, I1 (p ,6,c ,-) is the value of 1l(y 1, v ,) when the orbit

of (- 1.1.1) starting at  y
~ 

= c , y, = 0 is integrat ed ba ckwards

-- -5--- - —- - - -- --- - - - - - -



- -- ~~~~~~~~~~
_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I

— 79-

— 

in time until it intersects y2 
= 0. Equation (4.4.1) will have a

periodic orbit passing through y1 
= c , y 2 

= 0 if and only if

U(p ,6,c ,+) - I1 (p , ó ,c,-) = 0. (4.4.28)

Using the same me thod as in Lemma 2 , we can rewr ite equa tion

(4 .4 . 2 8 )  as

G(p ,6,c) = f (py~ + y6 y~y~)dt + 0 (p
2 

+ 62) = 0 (4.4.29)

where the above integral is taken over the curve

y2 
= r ( y 1) = [y

~ 
- 

(4/2 )  
+ (c 4/ 2 )  - c 2]~~

’2, (4.4.30)

f r o m  y 1 
= c , y2 = 0 to = 0 again. By (4.4.29)

- 

-
~~

-
~~

- G(0 ,0,c) = j y~dt > 0. (4.4.31)

-

: - 
Thus, for fixed c we can so l ve (4.4.29) . We cannot solve (4.4.29)

uniformly in c however , since as c -
~ 1 the right hand side of

- ( 4 . 4 . 3 1) tends to 0. We use a me thod s imi lar to that us ed by

Kopell and Howard in [39 , p. 337-3381 to obtain p
2 (c ,6) for

0 < c ( 1.

- 

- 
Equation (4.4.1) has a fixed point at (y1,y 2) 

= (1,0) +

0 (Ip t , I 6 I ). For p ,6 suff ic ient ly small we make a change of

variables = h~ (y 1,y 2,p ,6) so that the fixed point is trans-

II 
—5--- -—- - 5- •5--5~~5-~ =— — -----5--—-— 5-~~-5-55- .~. ~~~ ~~~~~~~~~~ ~~~4S- S S ~I5~I5 - - - - - 4
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formed into 
~~~~~~ 

= (1 ,0). An easy calculation shows that if

we make ‘hi s transformation , then the only change in (4 .4. 1) is

in the functions g1 and g 2 . We suppose tha t the above change

of variables has been made and we write y
) 

for .

The curves H(y 1,y7) = H(c,0) can be written in the form

4U(y 1,y,) + 1 = 2y~ + (y 1 -l)
2(y 1~~)

2 
= (c-ly(c+1) 2. (4.4.32)

Thus , for c close to 1 the closed curves are approximately

y~ + 2(y1-1)
2 

= 2(c-1)2 . (4.4 .33)

so instead of equation (4.4.30) we consider the equation

= (c-i) G(c,p ,6) = 0. ( 4 . 4 . 3 4 )

If we prove that ~(~~,6,c) is bounded for 0 < c < 1 and that

(3/~~ )~~(O ,O ,c) is bounded awa y from zero for 0 < c < 1 , then we

can solve (4.4.34) uniformly in c.

Now

~ (y 1,y 2 ) = ~~~ + 6(Yy~y~ + 6y2g2 
+ 6(y~ -y 1 )g 1I.

Since the fixed point is at (1,0),  U(y1,y2) is bounded above and

below by quadratic forms in y2 and y1 
- 1. By (4.4.32),

4H(y 1,y2) + 1 is bounded above and below by quadra tic forms in

- 

- 

-

— 

- — -S----

~~~~~~~~~
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and y1 
- 1. Hence there exist functions ~~O-’~

6) = 0(111 1 + 1 6 1 )

such that

q1(~~,6) 
< ~~~~~~ ln(4H(y 1,y,) + 1) <

Integrating the above inequality over the curve given by (4.4.30)

we obtain

exp(q1(11,6)T) < (4H(~,6,c,+) + 1I/[4H(c,O) + 1) < exp(q2Q~,6)T) (4.4.35) 
p

where I is a bound for the time taken to trace the orbit. Using

(4.4.29), (4.4.32) and (4.3.35) we see that ~(p ,6,c) is bounded.

The fact that (a/~p)~~(c,0,0) is bounded away from zero follows 1’.

easily from (4.4.32). This proves that for 6 sufficient ly small

and 0 < c < 1, we can solve (4.4.32) to obtain p = p
2 (c ,6) =

—yQ(c)6 + 0(62) where J0(c)Q(c) = J1(c),

d
J 1 (c) = f w

2l r

and r(w) is defined by (4.4.30) and r (d) = 0, d > c. —

The fact that the perio Jic solution tends to the homoclinic

orbit is proved in the same way as the corresponding result in Lemma 2.

~5~

I 
— _ _ _
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Using f(x) -f(-x), Lemma 6 proves the existence of periodic

solutions of (4.4.1) surrounding (-1 ,0).

Lemma 7. Q’(c) > 0 for 0 < c < 1.

Proof. We write Q,J0 and as functions of b where

4b = c4 - 2c 2. Since (db/dc) < 0 for 0 < c < 1, we must prove

that Q’(b) < 0 for -1. < 4b < 0. Following the same procedure

as in Lemma 4, we find that J0, J~ , J1, Jj satisfy equation (4.4.22).

Thus , if Q’(b1) = 0 then

I.’
2SQ (b 1) 

+ 8b 1Q(b1) - 4Q(b1) - 4b1 = 0. (4.4.36)
- -

‘ - -5.

Since -1 c 4b1 < 0, the roots of (4.4.36) are less than I. Hence ,

if Q’(b1) = 0 then Q(b1) 
< 1. Also , from (4.4.23), if Q’(b1) = 0

then Q”(b 1) has the same sign as 4b1 
- 8b 1Q(b1) 

- Q2(b 1
). Using

(4.4.36) and Q (b1) < 1, this implies that Q”(b1) < 0. Since . 1
Q(-l/4) = 1, Q(O) = 4/ 5 , this shows that Q’(b) < 0 for -l < 4b < 0.

This completes the proof of the Lemma .

4.5. The Case £1 < 0

; With < 0, equation (4.3.1) becomes

= y2 
+ 6 2 g 1 (~~, 6 ,y)

(4.5.1)

= -y 1 
+ 
~y2 

- 4 + 6Yy~y2 + 62g2c~~,6,y).

-- --~~~~~-..——.-— -- -
— —~~~~~ — s .  ~~~

- —
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Let H1(y1,y2) 
= (y~/2) + (4/2) + (4/4 ) . Then along solutions

of (4.5.1), H1 = + 6yy ~y~ + 0(62). Using the same method s as

in the previous Lemmas , we prove that (4.5.1) has a periodic solu-

tion passing through y1 
= c > 0 , y2 = 0, if and only if

= ii~~(c ,6) = -yR(c)6 i. 0(ó~), where J0(c)R(c) 
= J

1 (c),

C .
J
~~

(c) = f w2’r(w)dw,0

r(w) = (2b - (w 4/2) - w2]h/’2 , 4b = C
4 

+ 2c 2.

In order to prove that for fixed p ,6, equation (4.5.1) has

at most one periodic solution we prove that R is strictly

monotonic.

Lemma 8. R’(c) > 0 for c > 0.

Proof. We write R ,J0,J 1 as functions of b . It is sufficient

to prove that R’ (b) > 0 f o r  b > 0.

Using the same methods as before , we show that

3J = 4bJ ’ - J ’0 0 1 (4.5.2) - 
-

15J 1 
= (l2h+4)J~ - 4bJ~

~~ 4bJ~ - 4J~~~. (4.5.3)

L
1 ’ 

_ _ _ _ _

- - - - .‘ 5— 5 -.-~~—-—~~~~- -- - - - - - - — — 5 - 5—- —

______ —--5 —~ - — 5 - —  5---- ,. ~~~~~~~~~~~~~~~~
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Now R’ has the same sign as S where S = 15[JjJ0-J~J1). By

(4.5.2),

S = (8b-4)J
~Jj 

= 5(J~)
2 

+ 4b(J6)2.

By ( 4 . 5 . 3 ) ,  bJ~ > Jj. Hence, for b > 2.

S > (J~)
2b~~(8b-4_5b+4) = 3(J~)

2 
> 0.

Similarly, if 0 < b < 2, then S > 3b2(J~)
2 

> 0. This completes
14-

the proof of Lemma 8.

4.6. More Scaling 
- 

k

In Section 4 we proved the existence of periodic solutions

of (4.4.1) which pass through the point (0,(2b)1”2). Lemma 3 I -

indicates that we may take b to be as large as we please. How-

ever our analysis relied on the fact that the are 0(1)

and this is true only for y in a bounded set. Also , our analysis

in Sections 4 and 5 restricts e11~ 2 to a region of the form

((c 1,~~2): ~c1 ( < 
~~~~~ 

< (constant) c~ }.

To remedy this we modify the scaling by setting

6 = 1 € ,c1~~ 1 1”2 h
1 , where h is a new parameter with 0 < 4h < 1

say. The other changes of variables remain the same . Note that if

F c 11 ,6 lie in a full neighborhood of the origin then 
~~~~~~ 

and 1 L
(x1,x2) lie in a full neighborhood of the origin .

After scaling , (4.1.1) becomes

i - I 1 
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= + g1(11, ,h,y) (4.6.1)

= h2sgn(C1)y1 
+ - 4 + 6yy~y2 

+ 62g2Qi ,
ó,h,y).

For 0 < 4h < 1 and u , -6 sufficiently small , the g
~ 

are 0(1)

for y in a bounded set.

Let > 0. Let H2(y1,y2) = (4/2) - (h24/2) + (4/4) .
Then along solutions of (4.6.1), H2 

= + T6y~y~ + 0(1.12+62)

- - Following the same procedure as in Sec tion 4, we find that (4.6.1)

has a periodic solution passing through y1 
= 0, y2 = 1, if and 1

only if

- 
- 

2 “ 2p = h p 1 (b ,6) = -yh’P(b)6 + 0(6 ) ,

where 2b = h 4. An easy computation shows that as h + 0,

h2P(b) = K + 0(h2), where J0K = /7 J1,

= J’w2~~(l~w4)h/2 dw.

Thus , for small h, (4.6.1) has a periodic solution passing through

- - y
1 

= 0, y2 = 1 if and only if p = -yK6 + 0(h216 ( + 62). In

particular , when ~ £2 > 0, 8 < 0, (4.1.1) has a periodic

solution passing through x1 = 0, x2 l~ l (-8K )~~c2 + 0 ( E ~~”2 ) .

For 0, a similar anlysis shows that (4.6.1) has a periodic

solution passing through y1 = 1, y2 
= 0, if and only if

[ p = h2p 2(h~~,6) = -yh 2Q(h~~)6 + 0(6 2),

:T5- 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

—
~~~~

- —-
~~~

-
~~~~~~~~
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i
and that as h -

~ 0, h2Q(h~~ ) = (K//f) + 0(h).

4.7. Comple t ion of the Phase Por traits

Our analysis in the previous sections proves the existence of

periodic and homoclinic orbits of (4.1.1) for certain regions in

- £
2 space . We now show how to complete the p ic tures.

O b t a i n i n g  the comple te phase por t rai t in the different regions in-
volves many calculations. However , the method is the same in each

case so we only give one representative example. We prove that if k
Y < 0, then the “outer” periodic orbits in region 5 is stable. We

use the scaling given in Section 3.

Since we are in region 5 , 111 (0 ,6) > i.~ > ~1 (b1(6), 6). Fix p

and 6 and let b2 be the solution of p = p 1(b,6) with

b2 > b1(6). Then we have to prove that the periodic solution r

of (4.4.1) passing through y1 
= 0, y, = (2b 2)

1”2 is stable.

Let b3 be the solution of p = p
1(b,6) with b3 < b1 (6) .

Then there is a periodic solut ion passing through y1 = 0,

y2 
= (2b ) 1”2 . In fac t , we prove that any solution of (4.4.1)

star t ing “outside” this periodic solution (and inside some bounded

set) tends to r as t •

Let b > b3. Let c(b,+) be the value of y1 when the orbit

of (4.4.1) starting at y1 
= 0, y, = (2b) 1”2 firs t hits y, = 0.

Similarly, c(b ,-) is the value of y1 when the orbit of (4.1.1)

starting at y1 = 0, y-, = (2b) 1
~~ is integrated backwards until it

hits y2 = 0. Using f(x, c) = -f(-x , c) , the solution passing through

(0 ,(2b) 1-’2), spiral s inwards or outwards according to the sign of

__ - 5-

~. 
_ __ _..~~~~

-i,
~~

- -
~~~~~_J____ 5__5 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
. 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



c(b,+) + c(b,-). Using the calculation in Lemma 2, c(b,+) + c(b ,-)

has the same sign as H(u ,6,b ,÷)  - H(p,-tS,b ,-) which in turn has

the same sign as

S = 
~l~~ 2~~

6) - ~1(b ,6).

Using the properties of p
1(b,6) given in Lemma 5, S is positive

if b < b 2 and negative if b > b2. The result now follows .

4.8. Remarks and Exercises

Remark 1. Consider equa tion (4.1.1) under the hypothesis that the

lineariza tion is given by * = A(~ )x where A(s) is defined by

(4 .1 .2) . Suppose also that (4.2.1) and (Hi) hold. Make the change

of variables ~ = B(c)x , where B(s) = I - ra~~A(~ ) and

r = 
~
3f1 (0 ,0) 

= 
33f2 (0 ,Oj

The map x • ~ will be one- to-one for £ sufficiently small.

Using the fact that A (s) and B(s) commute , it is easy to show

L. that the transformed equation satisfies all the above hypotheses

and that in addition it enjoys (1-13) . In par t icular , if the trans-

formed equa tion is

= F(i,c)

then



I
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i
33F1 (O ,0)

0

3 3 1
~ F2 (0 ,0) a f

2(0,o)__________ = 

~~

~
3F (0,0) a3f2(o ,o) 3a 3f (0 ,0)2 

= - +  
1

ax1ax 2 3x 1

Remark 2. We have assumed that f(x ,c) = -f(-x ,c). If we assume
that this is true only for the low order terms then we would obtain

similar results. For example , on L1 we would get a homoclinic
orbit with x1 > 0. Similarly on another curve L~ we would get
a homoclinic orbit wi th x 1 < 0. In general L1 and L~ would be

\

~~~~~~ different although they would have the same linear approximation

= (4/5 ) 6.

Remark 3. Suppose that we only assume (HI) and (H3). Then we can
still obtain partial results about the local behavior of solutions.
For example , in Lemma 2 we did not use the hypothesis 8 nonzero.

Hence, for each b > 0, (4.1.1) has a periodic solution through
x1 = 0, x2 V~I~~~

/’2 (2b) l,’2
~ 1 for some and £2 with > 0.

However, we cannot say anything about the stability of the periodic
orbits and we cannot say how many periodic orbits (4.1.1) has for
fixed and c

~
.

- 

I
~~$;

- - 

- - . 
- 

-
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Exercises.

(1) Suppose that ~ and 8 are negative . Prove that for

h ~~~~~~ 
in regions 5 and 6 , (4.1.1) has a connecting orbit.

Hint: Use the calculations in Lemma 1 and Lemma 6.

(2) Suppose that a and 8 are negative and that (E 1, €
2

)

is in region 3. Let U be the unstable manifold of the point

(0,0) in (4.1.1). Prove that U is in the region of attraction

of the periodic orbi t .

(3) Suppose that a is positive and 8 is negative . Show

that the bifurcation set and the corresponding phase por tra it s are

as given in Figures 3 and 5. 
-:

4.9. Quadratic Nonlinearities

In this sec t ion we discuss the local behavior of solut ions of

(4.1.1) when the nonlinearities are quadratic. Most of the material

in this sec tion can be found in [39]

Suppose that the linearization of (4.1.1) is * = A(c)x where

A(s)  is given by (4. 1 .2)  and that

2
f (0 ,€ ) = 0, 2 f1 (0 ,0) = 0.

ax 1

a2 a2
= ~~~~~~ f2 (0 ,0) $ 0, 8 ax 1a~~ 

f,(0,0) $ 0.

We also assume that 8 > 0, a c 0; the results for the other cases

are obtained by making use of the change of variables , t •

L ~2 ~~2 ’ X
1 

±X 1, X
2 

+ +X 2 .

_____ ~ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _
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I
Introduce parameters p ,5 , scaled var iables y

1 ,y2 
and a n ew

time t by the relations

1•

6 = l L l 1 ,  x1 = 6 y1, x, = ~ I
h/2 o3)~2,

£
2 

= 1 a 1 1” op , t = tl ’26*

We asume that £1 > 0 in wha t  f o l l o w s , see Exerc i se  8 for  the

case £
1 < 0.

Af ter scaling , (4 .1.1) becomes

= y, + O(6~)- (4.9.1)

>1
2 

= “l 
+ 11>12 

- 4 + 6 yy 1y 2  + 0(62)

where the dot means different iation wi th respec t to t , the

lie in a bounded se t and y = 8 I u I ~~ ” . No te that by mak ing a

change of variable we can assume that (1,0) i~ a fixed poin t of

(4.9.1) for p , 6 suff iciently small.

The objec t of the following exerc i ses is to show that the

b ifurcation set is given by Figure 6 and that the associated phase

por traits are given by Figure ‘
.

Exercises.

(4) Le t H(y 1,y 2) = (y~/2) - 

~ 1’2~ 
+ (4/3). Show that

along solutions of (4.9.1),

l•1 = ~~~ + 6yy
1y

5 
+ O( 6~~~.

‘I

- —~~~~~~~~~~~~~ -
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(5) Prove that there is a function ~ 
= i~1(c ,6), 0 < c < 1,

such that if i.~ 
= ~1(c,6) in (4.9.1) then there is a periodic

:o :~
0h1 through (c,O) if 0 < c < 1 and a homoclinic orbit if

(6) Prove that ~i 1(c ,6) = -yP (c)6 + 0(62) where

J0(c)P(c) 
= J1(c),

C l .
J
~
(c) = w’R(w)dw,

R(w) = [w2 - (2/3)w3 + 2b]~
”2 ,

6b = c2(2c-3) , R(c1) = 0, c1 > c.

(7) Prove that P(0) = (6/7), P(1) = 1 and P’(c) > 0 for

0 < c < 1. Deduce that for fixed 1.L ,6, (4.9.1) has at most one

periodic solution. (To prove that P’(c) > 0 we can use the same

techniques as in the proof of Lemma 4. An alternative method of proving

P’(c) > 0 is given in [391.)

(8) If £1 < 0, then after scaling (4.1.1) becomes

= + 0(62)

= -y l + PY 2 
- + yóy1y2 + 0 ( 6 2 ) .

Put = Z - 1, ~A - Y 6 .  Th en

+ 0(6 2 )

>‘2 z + 
~
y2 

- z2 + óyzy 2 + 0(62)

_ _  —-,-
~~~~~~~~

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_____ ___________ ___________ - 

~~~~~~~~~~~~~~
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which has the same form as equation (4.9.1) and hence transform the

results for t.~ ~‘ 0 into results for the case < 0.

(9) Show that the bifurc ation set and the corresponding phase .1
portraits are as given in Figures o - 7 .

62

_ _ __ _ _• 6

6

F $ G . 6
Bifurcation Set for the Case ~ < 0 , ~ 0.

j

____________ ~~~~~~~~~~~~~~~~~~ ____________ ~~~~~~~
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CHAPTER 5

APPLICATION TO A PANEL FLUTTER PROBLEM

5.1. Introduc tion

In this chapter we apply the results of Chapter 4 to a

particular two parameter problem . The equations are

a Ax + f(x) (5.1.1)

where

x (X 1,X 2,X 3,X 4)
T, f(x) [f1(x),f2(x),f3(x) ,f4(x)j

T, J
0 1 0 0 J

A 

[-
~ 

0 a2 b
2]

f 1(x) f3 (x) 0,

f 2 (x)  - x 1g(x) , J
f4 (x)  = 4x3g(x),

2 g ( x )  - 1T4(kx 2 
+ ox 1x 2 + 4kx~ + 4c7x3x4) ,

8P 2 . 2  2 .2c = — ~-- , a j = _ lI j ( n j  + r ~ ,

b
3 

a + /~ 6J , a o .oos , 6 — 0.1 ,

k > 0, a 0 are fixed and p ,r are pa rameters . The above system 1

_
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results from a two mode approximation to a certain partial differ-

ential equation which describes the motion of a thin panel.

Holmes and Mar sden (3 2 ,34) have studied the above equation and

first we briefly describe their work . By numerical calculations ,

they find that for p — p
0 108, r - -2 .23n 2, the matrix A

has two zero eigenvalues and two eigenvalues with negative real

parts. Th en for I~-~0 I and I r - r 0 1 small , by centre manifold

theory , the local behavior of solutions of (5.1.1) is determined by

a second order equation depending on two parameters. They then

use some results of Takens (49) on generic models to conjecture

that the local behavior of solutions of (5.1.1) for 
~
p-p 0j and

l r - r 0 1 small can be modelled by the equation

2 3
~~+ a i i + b u + u ~~i + u - 0

• I i

for a and b small.

I ~ R e c e n t l y ,  t h i s  con jec ture  has been proved by Holmes (33) , in

the case a - 0, by reducing the equation on the centre manifold

to Takens norma l form . We use centre manifold theory and the

results of Chapter 4 to obtain a similar result.

5.~~. Reduction to a Second Order  F q u a t i o n

The eigenvalues of A are the roots of the equation

+ d1A
3 + + d 3A + d4 

- 0 (5.2.1)

where the d. are functions of r and p . If A has two zero

LJT~TI - ~~ -~~ - _ _
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~ i~~e n v a l u c s  then d_ = d4 = 0. A calculation shows that if = d4 = (1, then

a1a2 + c 2 = 0

( 5 . 2 . 2 )
a b2 + b a a 0

or in terms of r and p ,

4 u ’(n 2+J’)(4n 2+r) + 
64 p 2 = 0 (5.2.3)

(l6 4+6p~~
2) (~

2+r) 4(a 2+6p 112)(4~
2+r) = 0. (5.2.4)

We prove that (5.2.3), (5.2.4) has a solution r = r0, p = p 0.
From (5.2.3) we can express p in terms of r. Substituting

this relation into (5.2.4) we obtain an equation H(~) = 0.

Calculations show that H(r1) < 0, H(1’2) > 0 where r1 = -(2.225)1T2

and r2 = - (2.23)TT 2, so that H(r0) = 0 for some £ (r 2 , r1) .

Further calculations show that (5.2.3), (5.2.4) has a solution

with 107.7 < P0 < 107.8.

In the subsequent analysis , we have to determine the sign of

various functions of and p0. Since we do not know r0 and

P0 exactly we have to determine the sign of these functions for

r0 and P0 in the above numerical ranges. 
•

When r = r0, p p0, the remaining eigenvalues of A are

given by

• 
-
~~~~~~~

- -- - 
~ • ~•



--

(b 1
+b

2) ± ((b 1-b 2)
2 

+ 4(a1+a2))~~
2

= 
2

and a calculation shows that they have negative real parts and L
non-zero imaginary parts.

We now find a basis for the appropriate eigenspaces when

= r0, ~ = p0. Solving Av 1 
= 0 we find that

• v 1 
= (i ,O ,~ a1/c ,

0jT. (5.2.5)

The null space of A is in fact one-dimensiona l so the canonical
2form of A must contain a Jordan block. Solving A v2 

= 0 we

obtain

v

~ 

= (0,l ,-b 1/c ,-a 1/c)
T, Ày

2 
= v1. (5.2.o)

The vectors v1 and v~ form a basis for the generalized cigenspace

of A corresponding to the zero eigenvalues. Similarl y , we find a

(real) basis for the space V spanned by the eigenvectors correspond-

ing to A 3 and A 4. Solving A: = X 3 ., we f i nd  tha t v is spanned

by v3 and where

2v 3 
= : + ~:, 2v 4 

= i (z-z),

= (l ,A 3, W ,A 3WJ
’ ( 5 .~~.7 )

wc = b 2A 3 
• b1b

., + a-,.

L Let A0 denote the matrix A when 1’ = r0 and ~ = p
~ .

L

~ -
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Let s = (v 1,v2,v3,v4) where the v 1 are defined by (5.2.5),

(5.2.6) and (5.2.7) and set y = S 1x. Then (5.1.1) can be written

in the form

a By + S~~(A-A 0)Sy + F(y,r,P) (5.2.8) U
where F(y,r ,P) = S~~f(S y) ,

0 1 0 0

0 0 0 0 :i
8=  : :: ::

and where A 3 = p1 + ip2, p1 < 0, p2 s 0.

Th en for ~r-r 0j and I~~-~ 0 I sufficiently small (5.2.8)

has a centre manifold y3 = h1(y1,y2,r ,p), y4 h2(y1,y2,r ,p). The

flow on the centre manifold is governed by an equation of the form

~ ~i r ~i
• f I I I I + E(F,P) + N(y 1,y 2, r ,o) (5.2.9)

[Y2j L° 0] L~”2J

where E( r ,p) is a 2 ~ 2 matrix with E(r0,p0) a 0 and
N (y 1,y2, r ,p) contains no linear terms in y 1 or y2. We show

that there is a nonsingular change of variables (F,p)  + (c1,c
2)

for (r ,P) close to (r 0, p 0) and a r ,p dependent change of

variables (y 1,y2) -~ 
G1,~~2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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cor r esponding to ( 5 . 2 . 9 )  is

S r~= . (5.2.10)
L

~~

The tr ansformation (v 1,y2) -

~ 

i s of th e form

Identity + 0(~ r - r 0~ 
, 

~~‘ -~~~ ) )  and F = F 0, ~~ ~) is  mapped in to
= 0, 

~~~2 = 0. After these transformations , (5. 2.9) takes the form

0 1
= 

L~~ L
2 ‘2 

+ N ( ~~1,~~~,F0,p0) + N (~1,~~,,F ,p) (5 2 11)

where we have dropp ed the bar s on the Y j. The func tion ~~ will

contain no linear terms in or y2 and ~ (y 1,v ,,r 0,~ 0 ) = 0.

Since the nonlinear jtjes in (5.1.1) are cubic , the same will he

true of N and R.

Let

N (v 1 , v ,, F0, p
0 ) = [N 1 (v 1,v 2 , F0,~0), N ,(v 1, v ,, F0,~ ~) I ( 5. 2 .12)

and let

= 
~~~~~~~~ N 2(0,0,r 0,~ 0)

r = -
~
--——-

~~
- N 1 (0 , 0 , r~~,~~0 )

( 5 . 2 . 1 3 )

~~ N~ (o,o ,r0,~ 0)

= 3r +
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Using the results in Chapter 4 (see, in particular , Remark 1 in

Section 8), if and 8 are non-zero , we can determine the

local behavior of solutions of (5.2.11). B~’ Theorem 2 of Chapter 2,

this determines the local behavior of solutions of (5.2.8).

5.3. Calculation of the Linear Terms

From (5.2.1), trace(A) = d3(r,P), det(A) 
= d4(r,P) where .1

d3
(I’,P) = 4112 (112 + r ) ( 4 n 2 +r )  + t~ P 2

d 4 (r , P) = ~
2 (l6 a~

4+6P~~
2
) (n 2 +r)  + 4~

2(a~
2+6p 112) (4~

2 +r ) .

Calculations show that the mapping

(r , p ) -
~~ (d3(r ,p),d4(r,p)) (5.3.1)

has non-zero Jacobian at (r ,P) = (r 0, p0).

Define the matrix C(r ,P)

r o n• C(r,P) = I + E(r,p)

L ° ° J
and let J be the value of the Jacobian of the mapping

(r,p) -. (trace(C(r ,P)), det(C(r ,p))), (5.3.2)

evaluated at (r 0,P0). By considering the 4 x 4 matrix

B + S ’(A-A 0)S, it is easily seen that J is a non-zero multiple

_ • •- _ _ _ _

________ I.
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1 U 1 -I
of t h e  J a c o b i a n  of the ma Pping given by ( 5 . 3 . 1 ) .  Hence J i s

non-  z ero , so by the implicit function theorem we can use

L
I 

= - d e t ( C ( F ,~~) ) ,  1 , = trace(C(r ,~1)) as our bifurcation parameters.

Approx imate f o r m u l a e  for  and t , can ea si ly he found i f so

desired .

Le t C ( F ,~~) =

•
1 0

C li C~~~

• Then the linearized equation corresponding to (5.2.9) is

H ~I
L~2 ] ~ c 2 i L~2

Note that M is equa l to the identity matrix when = = 0.

5 . 4 .  C a l c u l a t ion of the N on l i n e a r  Terni s

We now calculate the nonlinear term in (5.2.9) when ~ o
p = P0. Since the nonlinearities in (5.1.1) are cubic , the centre

manifold has a “cubic zero” at the origin. Using x = Sy, on the

centre manifold

—• • - - •  -- •— -— _ •~~~~~~~~~ ~~
— •___•___ _~_i~~~~~~~ _ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—
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I+ O3~ x2 = y2 + 03
(5.4.1)

-a1 b1 -a1~~~~~~~~~~~~~~~~~~~~~~~~~ X4 --~— y 2 + O 3

I
where 03 O(Jy 1 f

3 
+ y2 f

3).

Let S 1 
= Lt jj) and let ‘

Fj ~yi,y2) = fj (y1,y2 , h1(y1,y 2, r0,p0)) .

Then using the notation introduced in (5.2.12) 
•.•

N1(y 1,y 2 , r0, p0) = t12F2(y1,y2) + t14F4(y 1,y 2) 
-~

(5.4.2) .1
• N2 (y 1,y 2 , r0, p0) = t22F2(y1,y2) + t24F4(y1,y2). • i

Using (5.4.1) 1

F
2

(y 1,y 2) ~~~~ [ky~+4k(~~)
2y~ + ay~y2 + 

8k:1b1 
~~~ 

+ y~y2~ 11
+ terms in y1y~ 

+ 0~

-4a 2b lT a 2
F4(y1,y2) = 

c~ 
F
2

(y 1,y 2) 
+ ~ [ky~y2 + 4k(-~-) y~y2I

+ terms in y1y~ and y~ + 0~ • I
where 0~ = °(1y1 1 ~ + Iy 2~~

5). Note also that since r = F
0 and •

p = p0, ( 5 . 2 . 2 )  holds. I
From (5.2.13) and (5.4.2)

~~~~ ~~~~~~~~~~~~~~~~~~

-
‘ •

~~~~~
- J~~_ 

•~~~~~~ •- •• ____
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a a
— 1,~• k(l + 4(-~ -~~)(t ,2 - 4 L  t 2 4 )

a1 -, a
• - -i--- k(l + 4(——r)(t 12 - 4~4 t 14 )

Ska 1h 10,12

—~
_ 
(~ 

+ -_
~~~~~

-
~~ 

+ _‘r~- ) ( t , .  - .1 — — + 
~~~~~~~ 

h1kt 24 (c~+ .Ia~ ) .

Rout ine calculations show that

L I  t 1. m h 2 (2a
1

-h
1

h 7)

t ,, — ma )

t 1~ - m 2c (h 1 +h 2)

-mc

m — (a 1+a , -h 1b 1) - 
0.

Using (5.2.2) and numerical calculatio ns , we find that

L .  t ,, - 4 —
~~ t ,~ — m(4a1+a 2) 0

a
- 4 — -- t14 — b 1m (2a 2 -h ~~-4a 1) ~ 0

so that 
~~~~~ 

and r ar e negative. Similarl y , the coefficient

of k in ~ is

—~-.~--- a1h1m(12a1+a 2) ‘~ 0.

Hence and 8 are negative and the local behavior of solutions

L of (5.1.1) can he determined using the results of Chapter 4.

.. • •_..‘ -.•~~~~~~ •-•-•~~._•-_~~~ ,•_..__ ~• -—
--_._-_ — —,-
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CHAPTER 6
INFINITE DIMENSIONAL PROBLEMS

6.1. Introduction

In this chapter we extend centre manifold theory to a class

of infini te dimensional problems . For simplicity we only consider

equations of the form

w = C w + N (w ) , w (0)EZ ,

0,

where Z is a Banach space , C is the generator of a strongly . 1

continuous semigroup on Z and N: Z -
~ Z is smooth. (For a

discussion of semigroup theory see f4 , 44].) With appropriate

• spectral assumptions on C , it is very easy to prove the analogues

of Theorems 1-3 of Chapter 2. For generalizations to other

evolution systems see [30,42].

6.2. Centre Manifolds

Let Z be a Banach space with norm I I  I I  . We consider

ordinary differential equations of the form

= Cw + N(w) , w(O) £ Z, (6.2.1)

where C is the generator of a strongly continuous linear semigroup

S(t) and N: Z -‘ Z has a uniformly continuous second derivative

with N(O) = 0 , N ’ ( O )  = 0 [N’ is the Frechet derivative of N].

It can be shown [4,7] that , with an appropriate definition of weak

_______ -p • - ,• • - ____ — • •• —
_______________________ - 

• • • ~ ~~~~~~~ • -~~~~~~ 
• ••• •• •• ~~~~~~~ -- -• — - J-- IlC&.~M~~~ _--- —-- — —~~~~ -‘-.-~~~~
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solu t ion , a func tion w € C([0,T];Z), I > 0 , is a weak solution

of ( 6 . 2 . 1 )  if and only if w s a t i s f i e s

rt
w ( t )  = S ( t ) w ( 0 )  + I S ( t - T ) N ( w ( t ) ) d t  ( 6 . 2 . 2 )

J O

on [0 ,T 3 .  A standard argument shows that there is a unique solu-

tion of ( 6 . 2 .2 )  def ined on some maximal  in terval  [O~ Tm )
~ Tm > 0,

and that if Tm < then

Lim I Iw ( t ) l I
t-’T

Furthermore , if w(U) € D(A) then w(t) is differentiable on

(0,T) and satisfies (6.2.1).

To put (6.2.1) into canonical form we make some spectral

• L assumptions about C. We assume from now on that:

(i~) Z = X ~ Y where X is finite dimensional and Y is

closed.

• • (ii) X is C-invariant and that if A is the restriction of

C to X , then the real parts of the eigenvalues of A

are all zero.

(iii) If U(t) is the restriction of S(t) to Y, then Y

is U(t)-invariant and for some positive constants a,b ,

IIU(t ) II < ae~~
t , t > 0. ( 6 . 2 . 3 )

r Let P be the projection on X along Y. Let B = (I-P)C

and for x € X , y € Y , let f(x,y) = PN(x+y), g(x ,y) = (I-P)N(x+y).

~1
L. T~~~. ~~~~~~~~~~~~~~~~~~~
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E qu a t i o n  (t’ . 2 . l )  can be w r i t t e n

* = Ax + f(x ,y)
( 6 . 2 . 4 )

= By + g(x ,y)

An invariant manifold for (6.2.4) which is t angent  to X

space at the origin is called a centre manifold.

ii
Theorem 1. There exists a centre manifol d for (6.2.4), y = h(x),

l x i < 6 where h is C .

The proof of Theorem 1 is exactly the same as the proof given

in Chapter 2 for the corresponding finite dimensional problem.

• The equation on the centre manifold is given by

r

= Au + f(u,h(u)). (6.2.5)

In general if y(0) is not in the domain of B then y(t) will

not be differentiable. However , on the centre manifold y(t) =

h(x (t)), and since x is finite dimensional x(t), and consequently

y ( t ) ,  are d i f f e r e n t i a b l e .

Theorem 2 (a) Suppose that the zero solution of (6.2.5) is stable

• (asymptotically stable) (unstable). Then the zero solution of

( 6 . 2 . 4 )  is s t a b l e  (asymptotically stable) (unstable).

(b) Suppose that the zero solution of (6.2.5) is stable

Let (x(t),y(t)) be a solution of (6.2.4) with i (x(0),y(0)i I
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sufficiently small. Then there exists a solution u(t) of (6.2.5)

such that as t ~ ~~,

x(t) = u(t) + 0(e~~
t)

(6.2.6)
y(t) h(u(t)) + O(e~~

’t)

I
where y > 0 .

The proof of the above theorem is exactly the same as the proof

given for the corresponding finite dimensional result.

Using the invariance of h and proceeding formally we have

• - that

h’(x)[Ax + f(x,h(x))] = Bh (x ) + G(x ,h(x)). ( 6 . 2 . 7 )

To prove that equation (6.2.7) holds we must show that h(x) is in the
• .. domain of B.

• Let x0 € X be small. To prove that h(x0) is in the domain

• of B it is sufficient to prove that

U(t)h(x)~~ - h(x)~~Lim
t+o+ t

exists. Let x(t), y(t) = h(x(t)) be the solution of (6.2.4) with

x(0) = x0. As we rem arked ear lier , y(t) is differey~tiable. From

(6.2.4)

• k y(t) = U(t)h(x0) + 
J
U(t~ t)g(x(t),y(t))dt,

-1’  

_ _  
_ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- —-•-.---- — ,- _,_~~~~~
_____-_ ~~~~~~~~~~~~~~~~~ ~A
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so it is sufficient to prove that

~tLim 
~ J u ( t -r ) g ( x ( t ) , y ( t ) ) d t

0 .

exists. This easily follows from the fact that U(t) is a strongly

continuous semigroup and g is smooth. Hence h(x0) is in the

domain of B.

F
Theorem 3. Let ‘P be a C1 map from a ne ighborhood of the origin

in X into Y such that ‘P(0) = 0, ‘P ’(O) = 0 and ‘P (x) € D(B). 
.

Suppose that as x -
~~ 0, (M’P)(x) = O (1~~1~~), q > 1, where

(Mfl (x) = •‘(x)[Ax + f(x,fl] - B’P(x) - g(x,’P(x)).

Then as x -
~ 0, IIh(x ) - •(x)f I = O (1~~1~~).

•1
• The proof of Theorem 3 is the same as that given for the - .

finite dimensional case except that the extension 0: X + Y of ‘P

must be defined so that O (x) is in the domain of B. I

• 6.3. Examples 
-

Example 1. Consider the semilinear wave equation

~~~ + v
~ 

- v~~ 
- v + f(v ) = 0 , (x ,t) € (0 ,i~) X (0 ,oo)

(6.3.1) .~~V 0  at x 0 ,lr

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

• _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .. ~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • ,
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where f is a C3 function satisfying f(v) — v3 + 0(v4) as

V 0. We f i r s t  f o r m u l at e  ( 6 . 3 . 1 )  as an equa t ion  on a Hu be r t

space

Let Q - (d/dx)2 + 1 , D(Q) — H2(0,l) fl H~(0,1). Then Q is

.1 seIf-adjoint operator. Let 2 - H0(O,1) ~ L(O ,1), then ( .3.1)

can he rewritten as

• Cw + N(w) (6.3.2) 
V

• ~here

• r w 2 l  r o
C w - J  , N ( w ) a j

- L~’
-
~J

• 

. .

Since C is the sum of a skew seif-adjoint operator and a bounded

operator , C generates a strongly continuous group . Clearly N is

• a C3 map from Z into Z.
-, 1/’The eigenvalue s of C are An 

= [-1 ± (S- 4n ) J/2 .

= 0 and all the other eigenvalues have real part less than 0.

The ei genspace corresponding to the zero ei genvalue is spanned by

q~ where

Eli
q1(x) I Isin x.

L°J
• To apply the theory of Section 2 , we must put (6.3.2) into

canonical form . We first note that Cq., - -q2 wher e

L
L

_____________ ______ •

• - • -~•---- •

~~a_~~ 
s •_ ~.. •_ _ a~ 

S
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• 

• 

II
q2 (x ) = 

[ 

I]sin x 
i

and that all the other eigenspaces are spanned by elements of the

form a
n sin nx~ n > 2, an € In particular , all other eigen-

vectors are orthogonal to q1 and q2. Let X = span(q1),

V = span (q1,q2), Y = span(q2) ~ V’~, then Z = X ~ Y. The projection

P: Z X is given by ..
rw1]P[ j = (~1+~2)q1 (6.3.3) -•

where

•~~~[ ~ .(x) = ~ 
J 

w.(0)sin 0 do . 
1 

~

Let w = sq1 + y, s € IR, y E Y and B = (I-p)C , then we can write

(6.3.2) in the form

a PN(s q1+y) (6.3.4)
= By + (I-P)N(sq 1

+y).

By Theorem 1, (6.3.4) has a centre manifold y = h(s),

h(0) 0, h’(O) = 0, h: (-6,6) Y. By Theorem 2, the equation

which determines the asymptotic behavior of solutions of (6.3.4)
• is the one-dimensional equation

-
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I
sq 1 = PN(s q 1+ h ( s ) ) .  ( 6 . 3 . 5 )

Since the nonlinearities in (6.3.4) are cubic , h(s )  = C(s 3), so

that

-2~~~ 3 4s — 
~ 

f(s+0(s ))sin e dO
J O

5•
or

= ~~ s
3 

+ 0(~~). (6.3.6)

- 

Hence , by Theorem 2, the zero solution of (6.3.6) is asymptotically

stable. Using the same calculations as in Section 1 of Chapter 3,

1. if s (0)  > 0 then as t +

• • 1 ~ 
l/2  1/2s ( t )  = ( -a. t )  + O(t  ) .  ( 6 . 3 . 7 )

1:
Henc e, if v(x ,t) is a solution of (6.3.1) with v(x,0), v

~
(x ,O)

small , then either v(x,t) tends to zero exponentially fast or

v(x ,t) = ±s(t)sin x + 0(s 3) (6.3.8)

I
where s(t) is given by (6.3.7).

I Further terms in the above asymptotic expansion can be calculated

if we have more information about f. Suppose that f(v) = v3 +

av5 + 0(v 7 ) as v 0. In order to calculate an approximation to

h(s) set

4 1  
_ _  

_ _ _  

_ _ _ _ _ _

p 
— .~~I- ~~••~~~•- •~ •- — .-• ——---- -— — — — ~

. 
—:—

~ 
— — — 

~~~~~~~~~~~~~~~ 
‘-

~

-

~~~~~~
•
~

• _i~~~~ 
~~~~~~~~~~~~~~~~
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(M$ )~ s) — •‘(s )PN(sq 1+’P (x)) 
- B$ (s) - (l-P)N(sq 1+’P(s)) (6.3.9)

where •: IR Y . To apply Theorem 3 we choose •(s) so that

(M$)( s) — 0(s5) .  I f  •( s )  — 0(~~~) then

~4 P ( s )  — - B ’P ( s )  - (I-P)N(sq 1) + 0(s5)

• - -B~ (s) 
- 

~~~ s
3qi - 

~~~ [} + 0(s 5 ) ( 6 . 3 . 1 0 )

where q(x) - sin 3x. If

~~~s)  = aq2 s 3 
+ qs 3 (6.3.11)

then substituting (6.3.11) into (6.3.10) we obtain

(M$)(s) - caq
2s

3 
+ [8 2]q

~3 
- 

~~~ s
3q, - 

~~~~~~ 

[O]q•

Hence , if a — 3/4, B
~ 

— 1/32 , 8, — 0 then M’P(s) — 0(s5) so by

Theorem 3

h(s) - ~ q2s
3 

+ ~~~ [1
~~qs 3 + 0(s 5 ) .  ( 6 . 3 . 1 2 )

Substituting (6.3.12) into (6.3.5) we obtain

— ~~~~~ ~3 - + ~ a)s 5 + 0(~~).

_ _  
______ .1_

i

_ _ _ _- •_ • •_ • • •.••.• • • • • • •
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Then we can write (6.3.13) as

• 
= Cw + N ( w ) .  (6.3.14)

It is easy to check that C generates a strongly continuous group

on 2 and that N is a C~ map from Z into Z.

• If A is an eigenvalue of C then we must have a nontrivial

solution u(x) of

u’ ‘ ‘ - Bu” + (X+A 2)u = 0

u ( O )  u ” (O)  = u( 1) = u ” ( l )  = 0.

An easy computation then shows that A is an eigenvalue of C if

and only if

2A = -1 ± [1 - 4(n 4 iT~~+8n 2 1t 2 ) ]~~
’2 .

Let C = 1T 2
8 + it 4 . Then the eigenvalues of C are A (c), where

2A 1(C) = -1 + [l-4C] 1”2 , A 2(C)  = -l - A
1
(C), and all the rest of

the A~~(C) have real parts less than zero for £ sufficiently

• small. The eigenspaces corresponding to X 1 (C) and X 2(C) are

spanned by q1 and q2 where

q 1 
= lTx , q2 = irx

while the eigenspaces corresponding to A~~(c) for n > 2 are

spanned by elements orthogonal to q1 and q2.

_________ .—••- -—-— —•~~— .~1
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I Let X = span (q1), V = span (q1,q2), Y = span(q 2) ~ V
1, then

1 = X • I and the projection P: Z -‘ X is given by

I [wil - (A 1 (c) 
- A

2(C)) (~ 2-A
2 (c)~~1)q

1
L’~

’ZJ 
i r

where

~~~~~ I — ~1w. — 2 J w .(O)sin iTO dO .
0~~1 -5--

Let w = sq 1 + y, where s € IR and y € Y. Then we can write1 ( 6. 3 . 14 )  in the form

I
= A 1(e)sq 1 + PN(sq 1+y)

• •~ I = By + (I-P)N(sq
1
+y) (6.3.15) V

I
• By Theorem 1, (6.3.15) has a centre manifold y = h(s , c ) ,  I s I < iS,

I d < C . Using h ( s , C) = 0(s 2
+t c s I ), if N (w) is the second

• 
• component of N(w ) then

I N2 (sq1+h(s ,c))(x) = ~~ [J s2 n 4cos 2 ne de ] i t 2 5 sin

I
+ 0(s 4+lC s 3I)

I
= -s 3sjn 11x + 0(s4+1es 31).

Hence PN(sq 1+h(s ,d)) - (-s3+0(s4+~ cs3f))q1, so that by Theorem 2 ,

rTff lrr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the asymptotic behavior of small solutions of (6.3.15) is determined

by the equation

= X
1

(e)s  - s3 + 0(1Es 3) + f~4 J ) (6.3.16) Li
We can now determine the asymptotic behavior of small solutions of

(6 .3 .14). For 0 < £ < 6,solutions of (6.3.14) are asymptotically

stable. For -iS < C < 0, the unstable manifold of the origin

consists of two stable orbits connecting two fixed points to the

origin. (See Figure 1)

F.
Problem . For C = 0, show that equation (6.3.16) can be written as

~

• • -

= -s~ 
- 3s5 + 0(~~)

Y

•0’ 

I

Figure 1
Phase Portrait for Small Negative £

• - 
- 

-~~~ ~~~~~~~
• • ~~~~~~~~~~ •~~~•~~•• ~~~~~~~ ~~~~ 

•
-.---— - -— ~~~~ .-• -•
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Example 3. Consider the equation

I
u + 2u - u + a2v + f(u ,v) 0

I t t  t XX (6.3.17)
+ Zv

~ 
- v~~ 

- u + g(u,v) = 0

I
for (x,t) € (0 , 11) X (0,co) with u = v = 0 at x • 0,11, where

I f(u,v), g(u,v) have a second order zero at u = v = 0. For a = 2, H

I 
we show that the linearized problem has two purely imaginary

eigenvalues while all the rest have negative parts. We then use

I centre manifold theory to reduce the prbblem of bifurcation of

periodic solutions to a two-dimensional problem .

I Let w = (u,v ,Cl,~r)
T, then we can write (6.3 17) as

I w Cw+N (w) (6.3.18)

on 2 = (H2(0,1) fl H~ (0,1))2 x (L2 (O ,l))2. Let

• 
A[U) = [::~ : 

a2

v)

If i.~ is an eigenvalue of A then A is an eigenvalue of C

I 
where A 2 + 2A + ii = 0 and all the eigenvalue s of C arise in

this way . An easy calculation shows that the eigenvalues of C

are given by

• I A a -l ± (l-n 2±ia)~
”2 , n = 1, 2 

• I For a - 2 , the eigenvalues of C are A 1 
= ~~~ 

~l 
= -i , while all

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the rest have negative real parts. Also

(Re X
1 (2)) > 0

so that \
1(a) and ~1 (a) cross the imag inary axis with non-zero

speed. It is now trivial to apply centre manifold theory to conclude

that for a - 2 small , the behavior of small solutions is •

determined by an equation of the form •

r
~a -II

= I I s  + •J~ s ,a) (6.3.19)

L’
2 2• where s € D~ , ~ is a real parameter and J(s ,a) - 0(s ). To

apply the theory in Section 2 , Chapter 3, we need to calculate the

quadratic and cubic terms in J(s ,0). To do this we need to put

(6.3.18) into canonical form and to calculate the Centre manifold

• when a = 2. From now on we let a - 2.

On the subspace {r sin nx: r € ]R4} the operator C can be

represented by the matrix Cn where

• r° 0

• t o  o o 1
c — I  •,
“ I- n~ -4 -2 0Li n2 o -2

Note that the ei genvalues of C are g iven by thc ci genva l ues of

C~ for n — 1 , 2 To put (6.3.18) into canonical form we

first find a basis which puts C1 into canonical form . Calculations

~~~~~~~

- :~~ I - -- • _ - •-~~~~~~ •-- --~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

—•

~~~~~~~~~~~~~

•----. 

~~~~~~~~~~~ ~~~~~~~~~~
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I
show that if

I
~l
= [

~

J

~~ 2 = i~] ~ 3
[ : 2 ] d 4

4

[4 ]I -1 0 2 1

then C 1q 1 = -q 2, C1q2 
= q1, C1q3 = -2q 3 + q4 ,  C1q4 = -q 3 

- 2q4 .
Let w = Qz where Q = [q 1,q 2,q 3,q4J , then we can rewrite (6.3.18)

as

1
z = Q~~CQz + Q~~N(Qw) . (6 . 3 . 2 0)

E
j Let X = ( (s 1,s2 , O ,Oj Tl~I: 

~1’~~2 
E IR} , V ((0,0,r1,r2J

T
~i : r1,r2 E IRI ,

Y = V • [X • VI where ~(x) = sin x. Then 2 = X ~ Y and the

I projection P on X along Y is given by F
I -

- 
.

Pw= 2
~~~ I

I i~~(x) = ~ J w.(O)sin OdO .
Le t z ~51,52,0,01

T~, + y, S 1 CIR , y E Y , then we can write
(6.3.20) in the form 

- •

________ .•~ ~~~ • ~~~~~~~ - ~~~~~~~~~~~~~ --~~~~~~~ -~~~~~~ - --
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1~o -l1
- J J s  + <PQ~~N(Qw),*>

L b 0 J
(6.3.21)

- By + (I- P)Q~~N(Qw)

where B - (I-P)Q ~~CQ, ~ 
_ [1,1,0,0]T~ and s [s1,s2J

T. By

Theorem 1 (6.3.21) has a centre manifold y - h(s). V

From w a Qz we have that w - -2z - 22 A and w - z - z1 1 .. 2 2 3
Let Q~~~~

1 
= (t13 ),

rF(z)1 Nl3 t 141 r f ( _ 22l - 22 4 ,  z 2 
- z3)1

[G ( z)J  
— [~23 t 24J [g(-2z1 - 224, z2 

- z3)j

Suppose that F(z) = F
3(z )  + O( 1z1 4) and G(z ) - G 3 (z )  + O( 1z 1 4 )

where F3 and F4 are homogeneous cubics. Then if J1(s), J2(s)
denote the first two components of <PQ~~N(Qw),$> on the centre

manifold ,

J1(s) 
= ~ J F~ (s~ sin 8, s2s~n O ,o,o)dO + O (Isj 4)

with a similar expression for J2(s). Hence, on the centre manifold

~ -nr5 i ~~1(sfl
— I H ‘I + I ) (6.3.22)

1 0 s, J2 (s)

and we can apply the theory given in Section 2 of Chapter 3. If the

constant K associated with (6.3.22) is zero (see Section 2 of

• •-•—-• •~~ - -.-• -~~• ~~~~~~~~~~~~~~~~
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• 
• 

Chapter 3 for the definition of K) then the above procedure gives

I no information and we have to calculate higher order terms .

If F(:) = F2 (z )  + F
3(z ) + 0 (1z1 4) and G(z) = G

2
( . )  +

I G 3 (z)  + O ( J z 1 4 ) where F2 and C2 are homogeneous quadratics

then the calculation of the nonlinear terms is much more complicated.I 2On the centre man ifold = + O(s ), z2 s24’ + O(s),

I - 0(s ) , and = 0(s2). The terms of order s2 make a contri-

bution to the cubic terms in PQ~~N (Qw). Hence , we need to find a

I quadratic approximation to h(s). This is strai ghtforward but rather

complicated so we omit the details.

I
Example 4. Consider the equations

• 

• 

I u~ Dii + (B-1)u + A 2v + 2Auv + u2v + BA~~u
2

i V
t 

= 8Dv - Bu - A2v - 2Auv - u2v - BA 1
~u
2 

(6.3.23)

u v 0 at x 0,1,

I
where A ,B,~3 ,D are positive . The above equations come from a

I simplified model of a chemical reaction with u + A and v + BA 1

as the chemical concentrations 13 ,10].

I We study (6.3.23) on 2 — (H~(0,v )) 2. Set

I
I
I 

• • • • • -••— -

~~~~~~~~

-

~~~~~~~~~~

---— -- —-

~~ 

- - - ---

~~~~~~~~~

•-

I — 

- 

~~~~~~~~~~~~~~~~~~~~~ L~~~~~~~~~~~~
-
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2D 4-_i + (B-i) A
dx

w -  
V 

‘ ~~~ = 

-B OD~~—~~- A 2

I i i  
- jN(w) - I I (2Auv + u2v + BA 1u2)

L’J

then we can write (6.3.23) as

• * — Cw + N(w). (6.3.24)

We analyze the situation in which for some value of the para-

meters A ,B,O ,D, C has two zero eigenvalues such that the restriction

of C to the zero eigenspace has a Jordan block. The bifurcation

of static solutions when C has two zero eigenvalues and the
restriction of C to the zero eigenspace is zero , has been studied
in [21 ,22]. •

On the subspace {r sin nix , r £ 12} the operator C can be

LI

- 
•
~~~~~~~~

•- -
~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
-

~~~~
— •-

~~~~~~~~~~~~--~~~
~—
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I
represented by the matrix

I 
C = 

rn
2

11

~ 
+ B - 1 A 2 1

I L -B -t~Dn 2 112 - A2J

I
i The eigenvahue s of C are given by the eigenvalue s of Cn for

n = 1 ,2 We suppose that two of the eigenvalue s of C are

I negative while all the rest have negative real parts . For

simplicity we assume that the eigenvalues of C are zero .

If C1 is to have two zero ei genvahue s then

1 2trace(C 1) = B - 1 - IT D - A - 0n Jj = 0

I (6.3.25)
det(C1) = A28 - (B-l-n 2D) (A 2+OJ’2D) — 0.

We make the following hypotheses:

I
(Hl) There exists A0,B0,00,D0 such that (6.3.25) is satisfied

I and the real parts of the rest of the eigenvalues of C

are negative .

(H2) For A ,B,O ,D in a neighborhood of A0,B0,00,D0, we can
U parametrize trace (C1) and det(C1) by

I
trace(C1) — C

2~ 
det (C1) — -c 1. (6.3.26)

I
- - - •_ — - •  -• • - ~- -~“v-- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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The first hypothesis is satisfied , for example , if D0 > 0

and

= I , A0 
a 1T 2D0, Bo = ( 14~h12

D
0

)
2
. (6.3.27)

• If we vary B and 8 and keep A - A0, D = D0, then the mapping

(B ,8) • (det(C1), trace(C1)) has a non-zero Jacobian at B = B0,

0 = if A0,B0,00 are given by (6.3.27), so by the implicit

function theorem , (142) is satisfied. In order to simplify

• calculations we assume (6.3.27) from now on. .I

Let X = {s’~: s €]R
2}, Y = X~ where ‘~‘(x) = sin 11x, then

2 = X ~ Y. By Theorem 1, the system

~i = C w + N ( w )

- ‘I

has a centre manifold h: (neighborhood of X X 12) . Y, where we

have written C a (t 1, c
2). On the centre manifold , the equation

reduces to

— C1(~)s + F~(sq’+h(s ,c)) (6.3.28)

where s = [s1,s2)
T and

I:
— 2 I N~ (z( O )) sin ilede .

JO

We t reat  the l inear and nonlinear  par ts  of ( 6 . 3 . 2 8 )  separately.

_____________________ 
-r .7.-tlk ~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• 
~~~~~~~~~~~~~~~~~~~~~



• -- - -.- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T~~tii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • •• • •• •

~~~~~••~~~~
.•

~~~~~~~~~
— •

~~~~ •
1 

-12 5-

If q1 = [l ,p] , q2 = [-p, l] where p = -A 0 B0 , then

j C1 (0)q
1 

= 0 and C2 (O)q 2 
= (A 2 +B)q 1. Let Q — [q 15q,], then

III Q 1C (0)Q = I
- 

1

Let Q C1 (c)Q 
= I = (t . .)  and let

o~~ [~ ol
M (C) = I = I 2 I + 0(C).

[~ll t
12] [0 

A

I Then for C sufficiently small , M(C) is nonsingular and

-T

I 0 1 V

1 M(C)Q C~~(C)QM ’(C) = I I
L~et(T) trace(T)J

I
= 

[det(C]) trace(C1~~ 
= 

[1

I by (6.3.26). Let s = QM 1 (C)r , then (6.3.28) becomes

- ~~~ 
h r + M (C)Q ~ (QM~~ (c )r ~ + h(s ,c) ) .  (6 .3 . 2 9)

LCl~~~~J

I
_______ 

___________--

- -__ -
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To check the hypotheses of Section 9 of Chapter 4 we only

need calculate the nonlinear terms when C = 0. Using the fact

that h(s,0) 0(52), routine calculations show that

M(0)Q~~~(QM~~(0)r~ + h(s,0)) = [p p ] TR(r r )  + 0(Ir~ t + I r 2 I 3)

where

P1 
= -

~~~~~
- (l+p 2)~~ (1-p) , p2 

= j4 ( l+ p
2

)~~~~~~~~~( l + p ) (A
2

+ B)

2 2R ( r 1,r2) 
= c~1r1 

+ 1
2r1r2 

+ ~3r2 I
= BA~~ - 2B1”2 , ci

~ 
= 2(AZ+B)~~ (B 3/2A 2+A_BA 1).

Using (6.3.27), 
~~ 

= (1t2D0)~~ (1-hT
4D~) so that is non-zero

if 112D0 • 1. We assume that 1T 2
D

0 
$ 1 from now on. Note , a lso

that since 1 + p - (112D0~~
1 , we have that p2 is non-zero .

To reduce (6.3.29) to the form given in Section 9, Chapter 4

we make the substitution

P = (I-p 1p~
1A(C))r. (6.3.30)

Substituting (6.3.30) into (6.3.29) and using the above calculations

we obtain

1~~i1 •

= I I~ 
+ F(p ,c) (6.3.31)

Ldl c2J
I



-w_--•••._-——•_ .-•- —-•—--—- •~— — —

V

I

~ i ~~F ,(0,0) 3 F~~(0 ,0)

I = 

~~p z = U
l~
)
2~ 

= 

~~
p
l3P2 

= + 

~2P2

I ,
3 F

1 (0 ,0) 
— 0

I 
— .

We have already checked that ~ s 0. For most values of

is non:ero (~ is only zero when is a solution of a

I certain algebraic equathn~ . If ~ * 0 then we can apply the

theory given in Section 9, Chapter 4 to obtain the bifurcation set

for (6.3.23). If ~ = 0 then the theory given in Section 9,

Chapter 4 still gives us part of the bifurcation set; the full

bifurcation sec would depend on higher order terms .

I
Remark. If we vary 0 in (6.3.23) the theory given in Section 1I does not apply since the map (O ,v) -* Ov~~ is not even defined on

I the whole space. However , it is easy to modify the results of

Section 1 to accommodate the above situation . (See, for example ,

I Exercises 1-2 in Section 3.4 of [30].)

I
I
I

I 
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